Home Analysis of failure behaviour of carbon/carbon composite made by chemical vapour infiltration considering fibre, matrix and interface properties
Article
Licensed
Unlicensed Requires Authentication

Analysis of failure behaviour of carbon/carbon composite made by chemical vapour infiltration considering fibre, matrix and interface properties

  • Ralf Ermel , Tilmann Beck and Eberhard Kerscher
Published/Copyright: May 31, 2013
Become an author with De Gruyter Brill

Abstract

The mechanical properties of a unidirectional carbon/carbon (C/C) composite with a mainly highly textured matrix are investigated in tensile tests for the as-received state and after heat treatment from 1600°C to 2500°C. In order to interpret the composite behaviour single fibre tests, analyses of fracture surfaces and tests on infiltrated fibre felts were conducted. The fibre–matrix shear strength was determined by push-out indentation tests. Strength and ductility only change slightly although the strength of the fibres decreases significantly with increasing heat treatment temperature (HTT). The reason is a reduced bonding strength between fibre and matrix with increasing HTT. The Young's modulus of C/C composites increases with HTT. The best mechanical properties of the composite are reached by finding a compromise between sufficient fibre strength and weakened fibre-matrix strength at a HTT of 1600°C.


Dedicated to Professor Eckard Macherauch on the occasion of the 80th anniversary of his birth

* Correspondence address, Dr. Tilmann Beck, Institut für Werkstoffkunde I, Universität Karlsruhe (TH), Kaiserstr. 12, D-76131 Karlsruhe, Germany, Tel.: +49721/6084159, Fax: +49721/6088044, E-mail:

References

[1] G.Savage: Carbon–carbon composites, Chapman & Hall, London (1992).Search in Google Scholar

[2] D.B.Marshall, B.N.Cox: Acta Metal.35 (1987) 2607.10.1016/0001-6160(87)90260-4Search in Google Scholar

[3] J.Aveston, A.Kelly: J. Mater. Sci.8 (1973) 352.10.1007/BF00550155Search in Google Scholar

[4] B.Budiansky, J.W.Hutchinson, A.G.Evans: J. Mech. Phys. Solids34 (1986) 167.10.1016/0022-5096(86)90035-9Search in Google Scholar

[5] A.G.Evans, D.B.Marshall: Acta Metal.37 (1989) 2567.10.1016/0001-6160(89)90291-5Search in Google Scholar

[6] J.K.Wells, P.W.R.Beaumont: J. Mater. Sci.20 (1985) 1275.10.1007/BF01026323Search in Google Scholar

[7] E.Fitzer, K.-H.Geigl, W.Hüttner: Carbon18 (1980) 265.10.1016/0008-6223(80)90049-4Search in Google Scholar

[8] Z.J.Hu, W.G.Zhang, K.J.Hüttinger, B.Reznik, D.Gerthsen: Carbon41 (2003) 749.10.1016/S0008-6223(02)00403-7Search in Google Scholar

[9] A.Oberlin: Carbon22 (1984) 521.10.1016/0008-6223(84)90086-1Search in Google Scholar

[10] M.S.Dresselhaus, G.Dresselhaus, K.Sugihara, I.L.Spain, H. A.Goldberg: Graphite fibers and filaments, Springer-Verlag, Berlin (1988).10.1007/978-3-642-83379-3Search in Google Scholar

[11] W.G.Zhang, Z.J.Hu, K.J.Hüttinger: Carbon40 (2002) 2529.10.1016/S0008-6223(02)00206-3Search in Google Scholar

[12] W.G.Zhang, K.J.Hüttinger: Carbon41 (2003) 2325.10.1016/S0008-6223(03)00284-7Search in Google Scholar

[13] B.Reznik, K.J.Hüttinger: Carbon40 (2002) 621.10.1016/S0008-6223(01)00282-2Search in Google Scholar

[14] T.Chen, B.Reznik, D.Gerthsen, W.G.Zhang, K.J.Hüttinger: Carbon43 (2005) 3088.10.1016/j.carbon.2005.06.035Search in Google Scholar

[15] ASTM D 3379-75: Standard test method for tensile strength and Young's modulus for high-modulus single-filament materials (1989).Search in Google Scholar

[16] B.Reznik, M.Guellali, D.Gerthsen, R.Oberacker, M.J.Hoffmann: Materials Letters52 (2002) 14.10.1016/S0167-577X(01)00357-3Search in Google Scholar

[17] D.B.Marshall: J. Am. Ceram. Soc.67 (1984) C259.10.1111/j.1151-2916.1984.tb09626.xSearch in Google Scholar

[18] C.Marotzke: Comp. Sci. Tech.50 (1994) 393.10.1016/0266-3538(94)90027-2Search in Google Scholar

[19] A.Pfrang, R.Ermel, T.Beck, E.Kerscher, M.Müller, C.Ziebert, S.Ulrich, T.Schimmel: Proceedings of Carbon 2006 in Aberdeen, Scotland, UK, July 16–21 (2006).Search in Google Scholar

[20] W.Weibull: J. Appl. Mech.18 (1951) 293.10.1115/1.4010337Search in Google Scholar

[21] A.Oberlin, M.Guigon, in: A.R.Bunsell (Ed.), Fibre reinforcements for composite materials, Elsevier (1988).Search in Google Scholar

[22] W.N.Reynolds, R.Moreton: Phil. Trans. R. Soc. LondonA294 (1980) 451.Search in Google Scholar

[23] H.Hatta, T.Aoi, I.Kawahara, Y.Kogo: J. Comp. Mat.38 (2004) 1685.10.1177/0021998304044764Search in Google Scholar

[24] W.Watt: Proc. R. Soc. London A319 (1970) 5.10.1098/rspa.1970.0161Search in Google Scholar

[25] D.B.Marshall, B.N.Cox, A.G.Evans: J. Am. Ceram. Soc.68 (1985) 225.10.1111/j.1151-2916.1985.tb15313.xSearch in Google Scholar

[26] Y.Furukawa, H.Hatta, Y.Kugo: Acta Metal.37 (2003) 1819.Search in Google Scholar

[27] J.Brandstetter, H.Peterlik, K.Kromp, R.Weiss: Comp. Sci. Tech.63 (2003) 653.10.1016/S0266-3538(02)00250-6Search in Google Scholar

[28] R.Ermel, T.Beck, O.Vöhringer: Mat. Sci. Eng.A387 (2004) 845.Search in Google Scholar

[29] D.Ekenhorst, B.Muelle, A.Lange, M.P.Hentschel: Proceedings of ICCE/4 in Big Island of Hawaii, July 6–12 (1997).Search in Google Scholar

Received: 2006-4-21
Accepted: 2006-8-2
Published Online: 2013-05-31
Published in Print: 2006-10-01

© 2006, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Herrn Prof. em. Dr. rer. nat. Dr.-Ing. E. h. mult. Prof. h. c. Dr. h. c. Eckard Macherauch zum 80. Geburtstag
  5. Basic
  6. Stability of residual stresses in longitudinally and transversely deep rolled sintered iron under quasistatic and cyclic loading
  7. Residual stresses in random-planar aluminium/Saffil® short-fibre composites deformed in different loading modes
  8. Thermal residual stress analysis in continuous Al2O3 fiber reinforced NiAl composites
  9. On the fatigue behavior of ultrafine-grained interstitial-free steel
  10. Laser Interference Metallurgy – using interference as a tool for micro/nano structuring
  11. On dynamic and static strain ageing in Cu-2at.% Mn polycrystals
  12. High thermal stability of mechanically-alloyed nanocrystalline Cu–Nb alloys
  13. Possibilities and limits in thermohydrogen processing of beta titanium alloy Timetal®10-2-3
  14. Applied
  15. Cube textured tapes for use in YBa2Cu3O7–δ-coated conductor applications
  16. Cavitation erosion of advanced ceramics in water
  17. Influence of tension–compression loading history on plastic deformation of Mg wrought alloy AZ31
  18. Microstructure and mechanical properties of the extruded Mg-alloys AZ31, AZ61, AZ80
  19. Mechanical properties and microstructural changes of ultrafine-grained AA6063T6 during high-cycle fatigue
  20. Analysis of failure behaviour of carbon/carbon composite made by chemical vapour infiltration considering fibre, matrix and interface properties
  21. Cooperating twin robots form a new X-ray diffractometer for stress analysis
  22. Grinding-induced microstructural gradients and residual stresses in the surface layers of carbon steel and pure tungsten
  23. Residual-stress-induced subsurface crack nucleation in titanium alloys
  24. Microstructure and fatigue strength of the roller-bearing steel 100Cr6 (SAE 52100) after two-step bainitisation and combined bainitic–martensitic heat treatment
  25. History
  26. Damage tolerance: fracture mechanics in design
  27. Description of flow curves over wide ranges of strain rate and temperature
  28. Mechanismen und Modellierung der Verformung und Schädigung keramischer Faserverbundwerkstoffe
  29. Notifications
  30. Personal
Downloaded on 10.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.101384/html
Scroll to top button