Startseite On the fatigue behavior of ultrafine-grained interstitial-free steel
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the fatigue behavior of ultrafine-grained interstitial-free steel

  • Thomas Niendorf , Demircan Canadinc , Hans Jürgen Maier , Ibrahim Karaman und Steve G. Sutter
Veröffentlicht/Copyright: 31. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The present paper reports on the cyclic stress–strain response of body-centered cubic ultrafine-grained (UFG) interstitial-free (IF) steel severely plastically deformed at room temperature utilizing equal channel angular extrusion (ECAE). Low-cycle fatigue tests were conducted with various strain amplitudes and strain rates on samples obtained through different ECAE routes and number of ECAE passes in order to determine the optimum processing route(s) for improved fatigue response of this material. UFG IF steel is superior to its coarse grained counterpart under both monotonic and cyclic loading in terms of properties, such as stress ranges tolerated, strength levels attained, and the corresponding fatigue behavior. All UFG steels subjected to more than 4 ECAE passes exhibit stable cyclic stress–strain response. Moreover, it was shown that dynamic grain coarsening, which usually leads to cyclic softening in UFG materials, is not prevalent in the ECAE processed UFG IF steel. For representing the fatigue life of UFG IF steel, the parameter after Smith, Watson and Topper, which is an indication of energy dissipation per cycle, proved adequate while comparing materials obtained through different ECAE routes.


Dedicated to Professor Eckard Macherauch on the occasion of the 80th anniversary of his birth

* Correspondence address, Prof. Dr.-Ing. Hans Jürgen Maier, Lehrstuhl für Werkstoffkunde Pohlweg 47–49, D-33098 Paderborn, Germany, Tel.: +495251603855, Fax: +495251603854, E-mail:

References

[1] R.Z.Valiev, A.V.Korznikov, R.R.Mulyukov: Mater. Sci. Eng.A168 (1993) 141.Suche in Google Scholar

[2] R.Z.Valiev, I.V.Alexandrov, Y.T.Zhu, T.C.Lowe: J. Mater. Res.17 (2002) 5.10.1557/JMR.2002.0002Suche in Google Scholar

[3] H.W.HöppelJ.May, M.Göken: Adv. Eng. Mater.6 (2004) 219.10.1002/adem.200300582Suche in Google Scholar

[4] H.J.Maier, P.Gabor, N.Gupta, I.Karaman, M.Haouaoui: Int. J. Fat.28 (2006) 243.10.1016/j.ijfatigue.2005.05.004Suche in Google Scholar

[5] M.Haouaoui, I.Karaman, H.J.Maier: Submitted to Acta Mater. 2006.Suche in Google Scholar

[6] I.Karaman, G.G.Yapici, Y.I.Chumlyakov, I.V.Kireeva: Mater. Sci. Eng.A410–411 (2005) 243.Suche in Google Scholar

[7] I.Karaman, A.V.Kulkarni, Z.P.Luo: Phil. Mag.A85 (2005) 1729.10.1080/14786430412331331961Suche in Google Scholar

[8] C.C.Koch, K.M.Youssef, R.O.Scattergood, K.L.Murty: Adv. Eng. Mater.7 (2005) 787.10.1002/adem.200500094Suche in Google Scholar

[9] A.P.Zhilyaev, G.V.Nurislamova, B.-K.Kim, M.D.Baró, J.A.Szpunar, T.G.Langdon: Acta Mater.51 (2003) 753.10.1016/S1359-6454(02)00466-4Suche in Google Scholar

[10] Y.Saito, H.Utsunomiya, N.Tsuji, T.Sakai: Acta Mater.47 (1999) 579.10.1016/S1359-6454(98)00365-6Suche in Google Scholar

[11] J.Huang, Y.T.Zhu, D.J.Alexander, X.Liao, T.C.Lowe, R.J.Asaro: Mater. Sci. Eng. A371 (2004) 35.10.1016/S0921-5093(03)00114-XSuche in Google Scholar

[12] V.M.Segal: Mater. Sci. Eng. A197 (1995) 157.10.1016/0921-5093(95)09705-8Suche in Google Scholar

[13] Y.T.Zhu, T.C.Lowe: Mater. Sci. Eng. A291 (2000) 46.10.1016/S0921-5093(00)00978-3Suche in Google Scholar

[14] H.J.Maier, P.Gabor, I.Karaman: Mater. Sci. Eng. A410–411 (2005) 457.Suche in Google Scholar

[15] H.W.HöppelC.Xu, M.Kautz, N.Barta-Schreiber, T.G.Langdon, H.Mughrabi, in: M. Zehetbauer, R.Z. Valiev (Eds.), Proc. Int. Conf. “Nanomaterials by Severe plastic deformation – NANOSPD2”, Wiley-VCH, Weinheim (2004) 676.Suche in Google Scholar

[16] H.Mughrabi, H.W.Höppel, M.Kautz: Scripta Mater.51 (2004) 807.10.1016/j.scriptamat.2004.05.012Suche in Google Scholar

[17] O.GrässelL.Krüger, G.Frommeyer, L.W.Meyer: Int. J. of Plasticity16 (2000) 1391.10.1016/S0749-6419(00)00015-2Suche in Google Scholar

[18] D.H.Shin, K.-T.Park: Mater. Sci. Eng. A410–411 (2005) 299.Suche in Google Scholar

[19] J.T.Wang, C.Xu, Z.Z.Du, G. Z.Qu, T.G.Langdon: Mater. Sci. Eng. A410–411 (2005) 312.Suche in Google Scholar

[20] Y.Fukuda, K.Ohishi, Z.Horita, T.G.Langdon: Acta Mater.50 (2002) 1359.10.1016/S1359-6454(01)00441-4Suche in Google Scholar

[21] German Standards DIN EN 10130: 1999–02.Suche in Google Scholar

[22] M.A.Meyers, A.Mishra, D.J.Benson: Prog. Mater. Sci.51 (2006) 427.10.1016/j.pmatsci.2005.08.003Suche in Google Scholar

[23] H.W.HöppelM.Kautz, C.Xu, M.Murashkin, T.G.Langdon, R.Z.Valiev, H.Mughrabi: Int. J. Fatigue, in press.Suche in Google Scholar

[24] H.-K.Kim, M.-I.Choi, C.-H.Chung, D.-H.Shin: Mater. Sci. Eng. A340 (2003) 243.10.1016/S0921-5093(02)00178-8Suche in Google Scholar

[25] S.V.S.Narayana Murty, S.Torizuka, K.Nagai, T.Kitai, Y.Kogo: Scripta Mater.53 (2005) 763.10.1016/j.scriptamat.2005.05.027Suche in Google Scholar

[26] H.S.Kim, W.S.Ryu, M.Janecek, S.C.Baik, Y.Estrin: Adv. Eng. Mater.7 (2005) 43.10.1002/adem.200400146Suche in Google Scholar

[27] Y. I.Son, Y. K.Lee, K.-T.Park, C. S.Lee, D. H.Shin: Acta Mater.53 (2005) 3125.10.1016/j.actamat.2005.02.015Suche in Google Scholar

[28] R.E.Barber, T.Dudo, P.B.Yasskin, K.T.Hartwig: Scripta Mater.51 (2004) 373.10.1016/j.scriptamat.2004.05.022Suche in Google Scholar

[29] V.M.Segal, R.E.Goforth, K.T.Hartwig, 1995, Texas A&M University, U.S. Patent No. 5,400,633.Suche in Google Scholar

[30] H.J.Christ: Wechselverformung von Metallen, Werkstoff-Forschung und -Technik9 (1991) Springer-Verlag, Berlin.10.1007/978-3-642-52345-8Suche in Google Scholar

[31] H.J.Maier, P.Gabor, T.Niendorf, I.Karaman, M.Haouaoui, S. G.Sutter: Proc. 9th Int. Fatigue Congress, Fatigue 2006, Elsevier Amsterdam (2006) on CD.Suche in Google Scholar

[32] K.N.Smith, P.Watson, T.H.Topper: J. Mater.5 (1970) 767.Suche in Google Scholar

[33] Y.Iwahashi, Z.Horita, M.Nemoto, T.Langdon: Acta Mater.46 (1998) 3317.10.1016/S1359-6454(97)00494-1Suche in Google Scholar

[34] R.Lapovok, F.H.Dalla Torre, J.Sandlin, C.H.J.Davies, E. V.Pereloma, P.F.Thomson, Y.Estrin: Mech. Physics Solids53 (2005) 729.10.1016/j.jmps.2004.11.006Suche in Google Scholar

[35] T.Magnin, J.Driver, in: C.Amzallag, B.N.Leis, P.Rabbe (Eds.), Low-Cycle Fatigue and Life Prediction, ASTM STP 770 American Society for Testing and Materials West Conshohocken (1982) 212.10.1520/STP32430SSuche in Google Scholar

[36] C.Sommer, H.Mughrabi, D.Lochner: Acta Mater.46 (1998) 1527.10.1016/S1359-6454(97)00362-5Suche in Google Scholar

[37] A.Daniélou, J.Rivat, M.Robillard, J.Stolarz, T.Magnin: Mater. Sci. Eng. A319–321 (2001) 550.Suche in Google Scholar

[38] P.Gabor, H.J.Maier: Unpublished data.Suche in Google Scholar

[39] I.Samajdar, B.Verlinden, P.van Houtte, D.Vanderschueren: Scripta Mater.37 (1997) 869.10.1016/S1359-6462(97)00185-1Suche in Google Scholar

[40] F.Scholz, J.H.Driver, E.Woldt: Scripta Mater.40 (1999) 949.10.1016/S1359-6462(99)00047-0Suche in Google Scholar

[41] H.Mughrabi, H.W.Höppel, M.Kautz, R.Z.Valiev: Z. Metallkd.94 (2003) 1079.Suche in Google Scholar

Received: 2006-3-30
Accepted: 2006-7-12
Published Online: 2013-05-31
Published in Print: 2006-10-01

© 2006, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. Herrn Prof. em. Dr. rer. nat. Dr.-Ing. E. h. mult. Prof. h. c. Dr. h. c. Eckard Macherauch zum 80. Geburtstag
  5. Basic
  6. Stability of residual stresses in longitudinally and transversely deep rolled sintered iron under quasistatic and cyclic loading
  7. Residual stresses in random-planar aluminium/Saffil® short-fibre composites deformed in different loading modes
  8. Thermal residual stress analysis in continuous Al2O3 fiber reinforced NiAl composites
  9. On the fatigue behavior of ultrafine-grained interstitial-free steel
  10. Laser Interference Metallurgy – using interference as a tool for micro/nano structuring
  11. On dynamic and static strain ageing in Cu-2at.% Mn polycrystals
  12. High thermal stability of mechanically-alloyed nanocrystalline Cu–Nb alloys
  13. Possibilities and limits in thermohydrogen processing of beta titanium alloy Timetal®10-2-3
  14. Applied
  15. Cube textured tapes for use in YBa2Cu3O7–δ-coated conductor applications
  16. Cavitation erosion of advanced ceramics in water
  17. Influence of tension–compression loading history on plastic deformation of Mg wrought alloy AZ31
  18. Microstructure and mechanical properties of the extruded Mg-alloys AZ31, AZ61, AZ80
  19. Mechanical properties and microstructural changes of ultrafine-grained AA6063T6 during high-cycle fatigue
  20. Analysis of failure behaviour of carbon/carbon composite made by chemical vapour infiltration considering fibre, matrix and interface properties
  21. Cooperating twin robots form a new X-ray diffractometer for stress analysis
  22. Grinding-induced microstructural gradients and residual stresses in the surface layers of carbon steel and pure tungsten
  23. Residual-stress-induced subsurface crack nucleation in titanium alloys
  24. Microstructure and fatigue strength of the roller-bearing steel 100Cr6 (SAE 52100) after two-step bainitisation and combined bainitic–martensitic heat treatment
  25. History
  26. Damage tolerance: fracture mechanics in design
  27. Description of flow curves over wide ranges of strain rate and temperature
  28. Mechanismen und Modellierung der Verformung und Schädigung keramischer Faserverbundwerkstoffe
  29. Notifications
  30. Personal
Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.101377/html
Button zum nach oben scrollen