Home On the fatigue behavior of ultrafine-grained interstitial-free steel
Article
Licensed
Unlicensed Requires Authentication

On the fatigue behavior of ultrafine-grained interstitial-free steel

  • Thomas Niendorf , Demircan Canadinc , Hans Jürgen Maier , Ibrahim Karaman and Steve G. Sutter
Published/Copyright: May 31, 2013
Become an author with De Gruyter Brill

Abstract

The present paper reports on the cyclic stress–strain response of body-centered cubic ultrafine-grained (UFG) interstitial-free (IF) steel severely plastically deformed at room temperature utilizing equal channel angular extrusion (ECAE). Low-cycle fatigue tests were conducted with various strain amplitudes and strain rates on samples obtained through different ECAE routes and number of ECAE passes in order to determine the optimum processing route(s) for improved fatigue response of this material. UFG IF steel is superior to its coarse grained counterpart under both monotonic and cyclic loading in terms of properties, such as stress ranges tolerated, strength levels attained, and the corresponding fatigue behavior. All UFG steels subjected to more than 4 ECAE passes exhibit stable cyclic stress–strain response. Moreover, it was shown that dynamic grain coarsening, which usually leads to cyclic softening in UFG materials, is not prevalent in the ECAE processed UFG IF steel. For representing the fatigue life of UFG IF steel, the parameter after Smith, Watson and Topper, which is an indication of energy dissipation per cycle, proved adequate while comparing materials obtained through different ECAE routes.


Dedicated to Professor Eckard Macherauch on the occasion of the 80th anniversary of his birth

* Correspondence address, Prof. Dr.-Ing. Hans Jürgen Maier, Lehrstuhl für Werkstoffkunde Pohlweg 47–49, D-33098 Paderborn, Germany, Tel.: +495251603855, Fax: +495251603854, E-mail:

References

[1] R.Z.Valiev, A.V.Korznikov, R.R.Mulyukov: Mater. Sci. Eng.A168 (1993) 141.Search in Google Scholar

[2] R.Z.Valiev, I.V.Alexandrov, Y.T.Zhu, T.C.Lowe: J. Mater. Res.17 (2002) 5.10.1557/JMR.2002.0002Search in Google Scholar

[3] H.W.HöppelJ.May, M.Göken: Adv. Eng. Mater.6 (2004) 219.10.1002/adem.200300582Search in Google Scholar

[4] H.J.Maier, P.Gabor, N.Gupta, I.Karaman, M.Haouaoui: Int. J. Fat.28 (2006) 243.10.1016/j.ijfatigue.2005.05.004Search in Google Scholar

[5] M.Haouaoui, I.Karaman, H.J.Maier: Submitted to Acta Mater. 2006.Search in Google Scholar

[6] I.Karaman, G.G.Yapici, Y.I.Chumlyakov, I.V.Kireeva: Mater. Sci. Eng.A410–411 (2005) 243.Search in Google Scholar

[7] I.Karaman, A.V.Kulkarni, Z.P.Luo: Phil. Mag.A85 (2005) 1729.10.1080/14786430412331331961Search in Google Scholar

[8] C.C.Koch, K.M.Youssef, R.O.Scattergood, K.L.Murty: Adv. Eng. Mater.7 (2005) 787.10.1002/adem.200500094Search in Google Scholar

[9] A.P.Zhilyaev, G.V.Nurislamova, B.-K.Kim, M.D.Baró, J.A.Szpunar, T.G.Langdon: Acta Mater.51 (2003) 753.10.1016/S1359-6454(02)00466-4Search in Google Scholar

[10] Y.Saito, H.Utsunomiya, N.Tsuji, T.Sakai: Acta Mater.47 (1999) 579.10.1016/S1359-6454(98)00365-6Search in Google Scholar

[11] J.Huang, Y.T.Zhu, D.J.Alexander, X.Liao, T.C.Lowe, R.J.Asaro: Mater. Sci. Eng. A371 (2004) 35.10.1016/S0921-5093(03)00114-XSearch in Google Scholar

[12] V.M.Segal: Mater. Sci. Eng. A197 (1995) 157.10.1016/0921-5093(95)09705-8Search in Google Scholar

[13] Y.T.Zhu, T.C.Lowe: Mater. Sci. Eng. A291 (2000) 46.10.1016/S0921-5093(00)00978-3Search in Google Scholar

[14] H.J.Maier, P.Gabor, I.Karaman: Mater. Sci. Eng. A410–411 (2005) 457.Search in Google Scholar

[15] H.W.HöppelC.Xu, M.Kautz, N.Barta-Schreiber, T.G.Langdon, H.Mughrabi, in: M. Zehetbauer, R.Z. Valiev (Eds.), Proc. Int. Conf. “Nanomaterials by Severe plastic deformation – NANOSPD2”, Wiley-VCH, Weinheim (2004) 676.Search in Google Scholar

[16] H.Mughrabi, H.W.Höppel, M.Kautz: Scripta Mater.51 (2004) 807.10.1016/j.scriptamat.2004.05.012Search in Google Scholar

[17] O.GrässelL.Krüger, G.Frommeyer, L.W.Meyer: Int. J. of Plasticity16 (2000) 1391.10.1016/S0749-6419(00)00015-2Search in Google Scholar

[18] D.H.Shin, K.-T.Park: Mater. Sci. Eng. A410–411 (2005) 299.Search in Google Scholar

[19] J.T.Wang, C.Xu, Z.Z.Du, G. Z.Qu, T.G.Langdon: Mater. Sci. Eng. A410–411 (2005) 312.Search in Google Scholar

[20] Y.Fukuda, K.Ohishi, Z.Horita, T.G.Langdon: Acta Mater.50 (2002) 1359.10.1016/S1359-6454(01)00441-4Search in Google Scholar

[21] German Standards DIN EN 10130: 1999–02.Search in Google Scholar

[22] M.A.Meyers, A.Mishra, D.J.Benson: Prog. Mater. Sci.51 (2006) 427.10.1016/j.pmatsci.2005.08.003Search in Google Scholar

[23] H.W.HöppelM.Kautz, C.Xu, M.Murashkin, T.G.Langdon, R.Z.Valiev, H.Mughrabi: Int. J. Fatigue, in press.Search in Google Scholar

[24] H.-K.Kim, M.-I.Choi, C.-H.Chung, D.-H.Shin: Mater. Sci. Eng. A340 (2003) 243.10.1016/S0921-5093(02)00178-8Search in Google Scholar

[25] S.V.S.Narayana Murty, S.Torizuka, K.Nagai, T.Kitai, Y.Kogo: Scripta Mater.53 (2005) 763.10.1016/j.scriptamat.2005.05.027Search in Google Scholar

[26] H.S.Kim, W.S.Ryu, M.Janecek, S.C.Baik, Y.Estrin: Adv. Eng. Mater.7 (2005) 43.10.1002/adem.200400146Search in Google Scholar

[27] Y. I.Son, Y. K.Lee, K.-T.Park, C. S.Lee, D. H.Shin: Acta Mater.53 (2005) 3125.10.1016/j.actamat.2005.02.015Search in Google Scholar

[28] R.E.Barber, T.Dudo, P.B.Yasskin, K.T.Hartwig: Scripta Mater.51 (2004) 373.10.1016/j.scriptamat.2004.05.022Search in Google Scholar

[29] V.M.Segal, R.E.Goforth, K.T.Hartwig, 1995, Texas A&M University, U.S. Patent No. 5,400,633.Search in Google Scholar

[30] H.J.Christ: Wechselverformung von Metallen, Werkstoff-Forschung und -Technik9 (1991) Springer-Verlag, Berlin.10.1007/978-3-642-52345-8Search in Google Scholar

[31] H.J.Maier, P.Gabor, T.Niendorf, I.Karaman, M.Haouaoui, S. G.Sutter: Proc. 9th Int. Fatigue Congress, Fatigue 2006, Elsevier Amsterdam (2006) on CD.Search in Google Scholar

[32] K.N.Smith, P.Watson, T.H.Topper: J. Mater.5 (1970) 767.Search in Google Scholar

[33] Y.Iwahashi, Z.Horita, M.Nemoto, T.Langdon: Acta Mater.46 (1998) 3317.10.1016/S1359-6454(97)00494-1Search in Google Scholar

[34] R.Lapovok, F.H.Dalla Torre, J.Sandlin, C.H.J.Davies, E. V.Pereloma, P.F.Thomson, Y.Estrin: Mech. Physics Solids53 (2005) 729.10.1016/j.jmps.2004.11.006Search in Google Scholar

[35] T.Magnin, J.Driver, in: C.Amzallag, B.N.Leis, P.Rabbe (Eds.), Low-Cycle Fatigue and Life Prediction, ASTM STP 770 American Society for Testing and Materials West Conshohocken (1982) 212.10.1520/STP32430SSearch in Google Scholar

[36] C.Sommer, H.Mughrabi, D.Lochner: Acta Mater.46 (1998) 1527.10.1016/S1359-6454(97)00362-5Search in Google Scholar

[37] A.Daniélou, J.Rivat, M.Robillard, J.Stolarz, T.Magnin: Mater. Sci. Eng. A319–321 (2001) 550.Search in Google Scholar

[38] P.Gabor, H.J.Maier: Unpublished data.Search in Google Scholar

[39] I.Samajdar, B.Verlinden, P.van Houtte, D.Vanderschueren: Scripta Mater.37 (1997) 869.10.1016/S1359-6462(97)00185-1Search in Google Scholar

[40] F.Scholz, J.H.Driver, E.Woldt: Scripta Mater.40 (1999) 949.10.1016/S1359-6462(99)00047-0Search in Google Scholar

[41] H.Mughrabi, H.W.Höppel, M.Kautz, R.Z.Valiev: Z. Metallkd.94 (2003) 1079.Search in Google Scholar

Received: 2006-3-30
Accepted: 2006-7-12
Published Online: 2013-05-31
Published in Print: 2006-10-01

© 2006, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Herrn Prof. em. Dr. rer. nat. Dr.-Ing. E. h. mult. Prof. h. c. Dr. h. c. Eckard Macherauch zum 80. Geburtstag
  5. Basic
  6. Stability of residual stresses in longitudinally and transversely deep rolled sintered iron under quasistatic and cyclic loading
  7. Residual stresses in random-planar aluminium/Saffil® short-fibre composites deformed in different loading modes
  8. Thermal residual stress analysis in continuous Al2O3 fiber reinforced NiAl composites
  9. On the fatigue behavior of ultrafine-grained interstitial-free steel
  10. Laser Interference Metallurgy – using interference as a tool for micro/nano structuring
  11. On dynamic and static strain ageing in Cu-2at.% Mn polycrystals
  12. High thermal stability of mechanically-alloyed nanocrystalline Cu–Nb alloys
  13. Possibilities and limits in thermohydrogen processing of beta titanium alloy Timetal®10-2-3
  14. Applied
  15. Cube textured tapes for use in YBa2Cu3O7–δ-coated conductor applications
  16. Cavitation erosion of advanced ceramics in water
  17. Influence of tension–compression loading history on plastic deformation of Mg wrought alloy AZ31
  18. Microstructure and mechanical properties of the extruded Mg-alloys AZ31, AZ61, AZ80
  19. Mechanical properties and microstructural changes of ultrafine-grained AA6063T6 during high-cycle fatigue
  20. Analysis of failure behaviour of carbon/carbon composite made by chemical vapour infiltration considering fibre, matrix and interface properties
  21. Cooperating twin robots form a new X-ray diffractometer for stress analysis
  22. Grinding-induced microstructural gradients and residual stresses in the surface layers of carbon steel and pure tungsten
  23. Residual-stress-induced subsurface crack nucleation in titanium alloys
  24. Microstructure and fatigue strength of the roller-bearing steel 100Cr6 (SAE 52100) after two-step bainitisation and combined bainitic–martensitic heat treatment
  25. History
  26. Damage tolerance: fracture mechanics in design
  27. Description of flow curves over wide ranges of strain rate and temperature
  28. Mechanismen und Modellierung der Verformung und Schädigung keramischer Faserverbundwerkstoffe
  29. Notifications
  30. Personal
Downloaded on 10.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.101377/html
Scroll to top button