Startseite Microstructure and fatigue strength of the roller-bearing steel 100Cr6 (SAE 52100) after two-step bainitisation and combined bainitic–martensitic heat treatment
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Microstructure and fatigue strength of the roller-bearing steel 100Cr6 (SAE 52100) after two-step bainitisation and combined bainitic–martensitic heat treatment

  • Hermann Vetters , Juan Dong , Hubert Bomas , Franz Hoffmann und Hans-Werner Zoch
Veröffentlicht/Copyright: 31. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Possible processes for shortening the heat treatment of roller-bearing steels in the lower bainitic range were investigated by computer assisted dilatometric experiments and by practical heat treatment process simulations. Several processes were evaluated and used on the steel 100Cr6 (SAE 52100). The microstructures achieved have been investigated by metallography, X-ray analysis and electron microscopy. Influences on hardness, as well as on the fatigue strength were examined. No loss in hardness was achieved and the fatigue strength, determined by rotating bar fatigue tests, was enhanced significantly by the shortened treatments, particularly by the use of the two-step bainitic treatment. The results indicated that small amounts of retained austenite, homogeneously dispersed on a sub-microscopic scale, as obtained during various treatment cycles, have influenced the fatigue strength. By means of the processes evaluated the heat treatment time can be shortened to about 10–25% of the duration of complete bainitisation in the lower range.


Dedicated to Professor Eckard Macherauch on the occasion of the 80th anniversary of his birth

* Correspondence address, Prof. Dr. Hermann Vetters, IWT BREMEN, Badgasteinerstr. 3, D-28359 Bremen, Germany, E-mail: , Priv.: Baumeister Specht Str. 42, D-88161 Lindenberg, Germany, Tel./Fax: +498381807428

References

[1] O.Schaaber: Härterei-Techn. Mitt.4 (1950) 9.Suche in Google Scholar

[2] F.Hengerer, G.Lucas, B.Nyberg: Härterei-Techn. Mitt.29 (1974) 71.Suche in Google Scholar

[3] J.Slycke, C.Fajers, J.Volkmuth: Härterei-Techn. Mitt.57 (2002) 156.Suche in Google Scholar

[4] E.Macherauch, O.Vöhringer: Härterei-Techn. Mitt.41 (1986) 71.Suche in Google Scholar

[5] W.Jellinghaus: Arch. Eisenhüttenw.23 (1952) 11/12, 459.10.1002/srin.195200972Suche in Google Scholar

[6] C.Li, J.L.Wang: Journal of Materials Science28 (1993) 2112.10.1007/BF00367570Suche in Google Scholar

[7] H.K.D.H.Bhadheshia: Bainite in Steels, Inst. of Materials, London (1992).Suche in Google Scholar

[8] M.Hillert: Scripta Mat.43 (2000) 831.10.1016/S1359-6462(00)00484-XSuche in Google Scholar

[9] H.I.Aaronson, G.Spanos, W.T.ReynoldsJr.: Scripta Mater.47 (2002) 139.10.1016/S1359-6462(02)00119-7Suche in Google Scholar

[10] J.Dong, H.Vetters, H.-W.Zoch: Trans. Mat. Heat Treatment25 (2004) 5, 555.Suche in Google Scholar

[11] M.Hunkel, Th.Lübben, F.Hoffmann, P.Mayr: Härterei-Techn. Mitt.54 (1999) 365.Suche in Google Scholar

[12] H.Bomas, T.Linkewitz, P.Mayr: Fatigue and Fracture of Engineering Materials and Structures22 (1999) 733.Suche in Google Scholar

[13] J.W.Christian, D.V.Edmonds: Phase Transformations in Ferrous Alloys; Warrendale, PA (1984) 293.Suche in Google Scholar

[14] European Patents: EP 0896068 B1; EP 0794262 B1; EP 1248862 A1.Suche in Google Scholar

[15] H.Vetters: Steel Research67 (1996) 408.10.1002/srin.199605511Suche in Google Scholar

[16] W.T.ReynoldsJr., S.K.Liu, F.Z.Li, S.Hartfield, H.I.Aaronson: Met. Trans.A21 (1990) 1433.Suche in Google Scholar

[17] G.Spanos, H.S.Fang, H.I.Aaronson: Met. Trans.A21 (1990) 1381.Suche in Google Scholar

[18] Y.Ohmori: Scripta Mater.47 (2002) 201.10.1016/S1359-6462(02)00129-XSuche in Google Scholar

[19] H.S.Fang, J.B.Yang, Z.G.Yang, B.Z.Bai: Scripta Mat.47 (2002) 157.10.1016/S1359-6462(02)00122-7Suche in Google Scholar

[20] T.Y.Hsu: Met. TransA21 (1990) 811.10.1007/BF02656564Suche in Google Scholar

[21] G.B.Olson, H.K.D.H.Bhadheshia, M.Cohen: Met. Trans.A21 (1990) 805.Suche in Google Scholar

[22] R.F.Hehemann: Phase transformations, ASM Ohio (1970) 397.Suche in Google Scholar

[23] O.Vöhringer, E.Macherauch: Härterei-Techn. Mitt.32 (1977) 153.Suche in Google Scholar

[24] H.Schwendemann: Die thermische Restaustenitstabilisierung bei den Stählen 100Cr6 und X210Cr12, Dr.-Ing. Diss.(Thesis), TU Karlsruhe (1981).Suche in Google Scholar

[25] A.Schrader, F.Wever: Arch. Eisenhüttenwes.23 (1952) 489.Suche in Google Scholar

[26] S.J.Matas, R.F.Heheman: Trans TMS AIME221 (1961) 179.Suche in Google Scholar

[27] H.K.D.H.Bhadheshia, J.W.Christian: Met. Trans.A21 (1990) 767.Suche in Google Scholar

[28] H.Vetters, K.Bullerdiek: Sonderbd. prakt. Metallographie33 (2002) 41.Suche in Google Scholar

[29] H.Vetters: Z. Werkstoffe, Wärmebehandlung, Fertigung, Härterei-Techn. Mitt.57 (2002) 168.Suche in Google Scholar

[30] C.Razim: Härterei-Techn. Mitt.23 (1968) 1.Suche in Google Scholar

[31] S.Laue, C.Thoben, H.Bomas, R.Schröder, R.Kienzler: Z. Werkstoffe, Wärmebehandlung, Fertigung, Härterei-Techn. Mitt.60 (2005) 271.Suche in Google Scholar

[32] D.Munz, K.Schwalbe, P.Mayr: Dauerschwingverhalten metallischer Werkstoffe, Braunschweig: Friedr. Vieweg+Sohn GmbH (1971).Suche in Google Scholar

Received: 2006-5-25
Accepted: 2006-7-6
Published Online: 2013-05-31
Published in Print: 2006-10-01

© 2006, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. Herrn Prof. em. Dr. rer. nat. Dr.-Ing. E. h. mult. Prof. h. c. Dr. h. c. Eckard Macherauch zum 80. Geburtstag
  5. Basic
  6. Stability of residual stresses in longitudinally and transversely deep rolled sintered iron under quasistatic and cyclic loading
  7. Residual stresses in random-planar aluminium/Saffil® short-fibre composites deformed in different loading modes
  8. Thermal residual stress analysis in continuous Al2O3 fiber reinforced NiAl composites
  9. On the fatigue behavior of ultrafine-grained interstitial-free steel
  10. Laser Interference Metallurgy – using interference as a tool for micro/nano structuring
  11. On dynamic and static strain ageing in Cu-2at.% Mn polycrystals
  12. High thermal stability of mechanically-alloyed nanocrystalline Cu–Nb alloys
  13. Possibilities and limits in thermohydrogen processing of beta titanium alloy Timetal®10-2-3
  14. Applied
  15. Cube textured tapes for use in YBa2Cu3O7–δ-coated conductor applications
  16. Cavitation erosion of advanced ceramics in water
  17. Influence of tension–compression loading history on plastic deformation of Mg wrought alloy AZ31
  18. Microstructure and mechanical properties of the extruded Mg-alloys AZ31, AZ61, AZ80
  19. Mechanical properties and microstructural changes of ultrafine-grained AA6063T6 during high-cycle fatigue
  20. Analysis of failure behaviour of carbon/carbon composite made by chemical vapour infiltration considering fibre, matrix and interface properties
  21. Cooperating twin robots form a new X-ray diffractometer for stress analysis
  22. Grinding-induced microstructural gradients and residual stresses in the surface layers of carbon steel and pure tungsten
  23. Residual-stress-induced subsurface crack nucleation in titanium alloys
  24. Microstructure and fatigue strength of the roller-bearing steel 100Cr6 (SAE 52100) after two-step bainitisation and combined bainitic–martensitic heat treatment
  25. History
  26. Damage tolerance: fracture mechanics in design
  27. Description of flow curves over wide ranges of strain rate and temperature
  28. Mechanismen und Modellierung der Verformung und Schädigung keramischer Faserverbundwerkstoffe
  29. Notifications
  30. Personal
Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.101388/html
Button zum nach oben scrollen