Development and verification of new nodal methods in the KIKO3DMG code
-
I. Pataki
und A. Keresztúri
Abstract
The paper reports about the development and verification of the new nodal methods to be used in the KIKO3DMG code. Two classes of the new methods are presented. The first class makes the treatment of the heterogeneities possible inside the assemblies while the extent of the crucial approximations applied on the node boundaries is more considerable in comparison to those in case of the second type. The nodal methods were validated by two VVER reference problems found in the AER benchmark book (aerbench.kfki.hu/aerbench). The AER-2 and FCM-101 benchmarks correspond to the VVER-440 and VVER-1000 geometry, respectively. It was found that the differences between the converged and the reference solutions are negligible from the practical point of view. The performance characteristics concerning the accuracy and the necessary CPU time – both depending on the mesh refinement – were also compared.
Kurzfassung
In diesem Beitrag wird die Entwicklung und Verifikation neuer nodaler Methoden des Programms KIKO3DMG vorgestellt. Dabei werden zwei Klassen beschrieben: Bei der ersten Methode können die Heterogenitäten innerhalb der Brennelemente berücksichtigt werden, während gleichzeitig die notwendigen Näherungen an den Rändern größer sind im Vergleich zur zweiten Klasse. Zur Validierung wurden zwei WWER Referenzfälle (AER-2 für WWER-440 und FCM-101 für WWER-1000) aus den Definitionen der AER Benchmarks herangezogen. Dabei zeigte sich, dass die Unterschiede zwischen den neuen konvergierenden Lösungen und den Referenzlösungen vernachlässigt werden können. Zusätzlich wurde noch die Rechenleistung verglichen hinsichtlich der Genauigkeit und der benötigten CPU-Zeit – beide hängen vom Detaillierungsgrad der Nodalisierung ab.
References
1 Makai, M.: HEXAN – A 2D Analytic Nodal Code in Hexagonal Geometry for IBM Computers. Trans. Am. Nucl. Soc.41 (1982) 314Suche in Google Scholar
2 Woo, S. W.; Cho, N. Z.: The analytic function expansion nodal method refined with transverse gradient basis functions and interface flux moments. Nuclear Science and Engineering139 (2001) 156–17310.13182/NSE01-A2229Suche in Google Scholar
3 Grundmann, U.; Mittag, S.; Rohde, U.: DYN3D Version 3.1, Code for Calculation of Transients in Light Water Reactors (LWR) with Hexagonal or Quadratic Fuel Elements (Draft). Forschungszentrum Rossendorf, March 2006Suche in Google Scholar
4 Cho, N. Z.; LeeJ.: Analytic function expansion nodal (AFEN) method in hexagonal-Z three-dimensional geometry for neutron diffusion calculation. Journal of Nuclear Science and Technology43 (2006) 1320–132610.1080/18811248.2006.9711226Suche in Google Scholar
5 ChristoskovI.; PetkovP. T.: A development of the HEXNEM nodal expansion method. Annals of Nuclear Energy51 (2013) 235–23910.1016/j.anucene.2012.06.036Suche in Google Scholar
6 Keresztúri, A.; Hegyi, Gy.; Maráczy, Cs.; Panka, I.; Telbisz, M.; TrosztelI.; Hegedűs, Cs.: Development and validation of the three-dimensional dynamic code – KIKO3D. Annals of Nuclear Energy30 (2003) 93–12010.1016/S0306-4549(02)00043-9Suche in Google Scholar
7 PatakiI.; KeresztúriA.: Calculation of the second AER kinetic benchmark problem by using a new nodal method. Proceeding of the 22nd AER Symposium, Pruhonice (ISBN:978-963-508-626-9) Vol. II. (2012) 775–784Suche in Google Scholar
8 GrundmanU.; Rohde, U.: Definition of the second hexagonal kinetic benchmark of AER. Proceedings of the 3rd Symposium of AER, 1993, pp. 325–332, KFKI Atomenergia Press, Budapest, 1993Suche in Google Scholar
9 Schulz, G.: Solutions of a 3D VVER-1000 benchmark. In: Proc. 6-th Symposium of AER on VVER Reactor Physics and Safety, Kirkkonummi, Finland, September 1996Suche in Google Scholar
10 Maráczy, Cs.; Kolev, N. P.; Magnaud, C.; Lenain, R.: Test ID: AER-FCM-001. 1999, <http://www.ftp.kfki.hu/local/aerbench/FCM001.doc>Suche in Google Scholar
11 Lautard, J.J.; Loubiere, S.; Fedon-Magnaud, C.: CRONOS: a modular computational system for neutronic core calculations. In: IAEA Specialist Meeting on Advanced Calculation Methods for Power Reactors, Cadarache, France, September 10–14, 1990Suche in Google Scholar
12 KolevN.P.; Lenain, R.; Fedon-Magnaud, C.: Finite element solutions of the AER-2 rod ejection benchmark by CRONOS. Proceedings of the 11th Symposium of AER, 2001, pp. 395–411, KFKI Atomenergia Press, Budapest, 2001Suche in Google Scholar
13 Kolev, N.P., Lenain, R., Magnaud, C.: AER Benchmark Specification Sheet – Test ID: AER-FCM-101, 1999, <http://www.ftp.kfki.hu/local/aerbench/FCM101.doc>Suche in Google Scholar
© 2014, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Editorial
- Editorial
- Technical Contributions/Fachbeiträge
- Highly enriched alternatives of VVER-440 fuel assembly
- “FULL-CORE” VVER-440 calculation benchmark
- Development of approximation method to evaluate isotopic composition of burnt fuel
- Fuel assembly burnup calculations for VVER fuel assemblies with the MONTE CARLO code SERPENT
- Solution of the CB6 benchmark on VVER-440 final disposal using the Serpent reactor physics code
- Development and verification of new nodal methods in the KIKO3DMG code
- HPLWR fine mesh core analysis
- Assessment of reactor scram effectiveness based on measured worth of separate CR groups
- Engineering factors of the macrocode MOBY-DICK
- CFD investigation of flow in the MATIS-H test facility
- Investigation of the hot-channel calculation methodology in case of shroud-less assemblies
- Assessment of the uncertainties of COBRA sub-channel calculations by using a PWR type rod bundle and the OECD NEA UAM and the PSBT benchmarks data
- Comparison analysis of effectiveness of diagnostic methods of local coolant boiling in WWER core
- Sensitivity of hydrodynamic parameters' distributions in VVER-1000 reactor pressure vessel (RPV) with respect to uncertainty of the local hydraulic resistance coefficients
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Editorial
- Editorial
- Technical Contributions/Fachbeiträge
- Highly enriched alternatives of VVER-440 fuel assembly
- “FULL-CORE” VVER-440 calculation benchmark
- Development of approximation method to evaluate isotopic composition of burnt fuel
- Fuel assembly burnup calculations for VVER fuel assemblies with the MONTE CARLO code SERPENT
- Solution of the CB6 benchmark on VVER-440 final disposal using the Serpent reactor physics code
- Development and verification of new nodal methods in the KIKO3DMG code
- HPLWR fine mesh core analysis
- Assessment of reactor scram effectiveness based on measured worth of separate CR groups
- Engineering factors of the macrocode MOBY-DICK
- CFD investigation of flow in the MATIS-H test facility
- Investigation of the hot-channel calculation methodology in case of shroud-less assemblies
- Assessment of the uncertainties of COBRA sub-channel calculations by using a PWR type rod bundle and the OECD NEA UAM and the PSBT benchmarks data
- Comparison analysis of effectiveness of diagnostic methods of local coolant boiling in WWER core
- Sensitivity of hydrodynamic parameters' distributions in VVER-1000 reactor pressure vessel (RPV) with respect to uncertainty of the local hydraulic resistance coefficients