Home Fuel assembly burnup calculations for VVER fuel assemblies with the MONTE CARLO code SERPENT
Article
Licensed
Unlicensed Requires Authentication

Fuel assembly burnup calculations for VVER fuel assemblies with the MONTE CARLO code SERPENT

  • T. Lötsch
Published/Copyright: August 21, 2014
Become an author with De Gruyter Brill

Abstract

The Monte Carlo code SERPENT (http://montecarlo.vtt.fi) is tested and validated for different fuel configurations but not for VVER fuel assemblies with Gd fuel pins and enrichment profiling. The presentation outlines the results obtained during fuel assembly burnup calculations for VVER-440 and VVER-1000 reactor types with Gd fuel pins. The calculations follow the proposal of the benchmark for VVER-440 fuel assemblies specified by Mikolas at the 14th Symposium of AER in 2004. For fuel assemblies of VVER-1000 reactor types with Gd fuel pins a benchmark by the OECD/NEA was specified in 2002. A set of data for the further verification of the few group data preparation in the framework of the VVER-1000 reactor core burnup benchmark proposed at the 19th AER Symposium in 2009 is received and analysed. The results presented show sufficient agreement with the reference values.

Kurzfassung

Das Monte Carlo Programm SERPENT (http://montecarlo.vtt.fi) ist getestet und validiert für unterschiedliche Brennstoffkonfigurationen, jedoch nicht für WWER-Brennelemente mit Gd-Brennstäben und Anreicherungsprofilierung. Die Arbeit stellt Ergebnisse dar, die bei BE-Rechnungen für WWER-440 und WWER-1000 mit Gd-Brennstäben erzielt wurden. Die Rechnungen folgen dem WWER-440-Benchmark, der von Mikolas zum 14. AER-Symposium 2004 vorgeschlagen wurde. Für WWER-1000-Brennelemente mit Gd-Brennstäben ist von der OECD/NEA 2002 ein Benchmark spezifiziert worden. Für die Verifizierung der Weniggruppendatenbereitstellung im Rahmen des auf dem 19. AER-Symposium 2009 vorgeschlagenen WWER-1000-Abbrandbenchmarks sind Daten erzeugt und analysiert worden. Die vorgestellten Ergebnisse zeigen ausreichende Übereinstimmung mit den Referenzwerten.

References

1 Leppänen, J.: PSG2 / Serpent – a Continuous-energy Monte Carlo Reactor Physics Burnup Calculation Code. Methodology – User's Manual – Validation Report. VTT Technical Research Centre of Finland, November 6, 2009 (http://montecarlo.vtt.fi)Search in Google Scholar

2 Mikolas, P.: Spectral Calculations of VVER-440 FA with Gd Burnable Absorbers. Proceedings of the 10th AER Symposium on VVER Reactor Physics and Reactor Safety, Moscow, Russia, September 18–22. 2000, p. 281Search in Google Scholar

3 Mikolas, P.: Results of the benchmark for VVER440 with Gd2O3 + UO2 pins burnup comparison. Proceedings of the 12th AER Symposium on VVER Reactor Physics and reactor safety, Sunny Beach, Bulgaria, Sept. 22–28. 2002, p. 163Search in Google Scholar

4 Mikolas, P.: Summary of Benchmark for VVER-440 with Gd2O3 + UO2 Pins Burnup Comparisons. Proceedings of the 13th Symposium of AER, Dresden, Germany, 22–26 Sept. 2003, p. 29Search in Google Scholar

5 OECD/NEA: A VVER-1000 LEU and MOX Assembly Computational Benchmark. Specification and Results, NEA/NSC/DOC(2002)10, OECD 2002Search in Google Scholar

6 Lötsch, T.; Khalimonchuk, V.; Kuchin, A.: Proposal of a benchmark for core burnup calculations for a VVER-1000 reactor core. Proceedings of the 19th AER Symposium on VVER Reactor Physics and Reactor Safety, St. St. Constantine and Elena resort, Bulgaria, Sept. 21–25, 2009, p. 53Search in Google Scholar

7 Lötsch, T.; Khalimonchuk, V.; Kuchin, A.: Corrections and additions to the proposal of a benchmark for core burnup calculations for a VVER-1000 reactor. Proceedings of the 20. AER Symposium on VVER Reactor Physics and Reactor Safety, Hanasaari, Espoo, Finland, Sept. 20–24, 2010, p.249Search in Google Scholar

8 Lötsch, T.; Khalimonchuk, V.; Kuchin, A.: Solutions for the TASK 1 and TASK 2 of the Benchmark for Core Burnup Calculations for a VVER-1000 Reactor. Proceedings of the 21. Symposium of AER, Dresden, Germany, 19–23 September, 2011, p. 233Search in Google Scholar

9 MPI: A Message-Passing Interface Standard, Version 2.2, Message Passing Interface Forum, September 4, 2009 (http://www.mpi-forum.org, http://www.open-mpi.de/)Search in Google Scholar

10 Lötsch, T.; Khalimonchuk, V.; Kuchin, A.: Consolidated data for task1 and status of task 2 of the benchmark for core burnup calculations for a VVER-1000 reactor. Proceedings of the 22. Symposium of AER, October 1–5, 2012, Pruhonice, Czech RepublicSearch in Google Scholar

11 Lötsch, T.; Kovbasenko, Yu. P.; Yeremenko, M. L.: Calculation Modelling of Fuel Assemblies of VVER1000 Type with the Use of Burnable Absorbers Gadolinium; Comparative Analysis, Proceedings of the 11th AER Symposium on VVER Reactor Physics and Reactor Safety, Csopak, Hungary, Sept. 24–28, 2001, p. 763778Search in Google Scholar

12 Lötsch, T.; Kovbasenko, Yu. P.: Results of Benchmark Calculation with the Codes NESSEL and CASMO. Proceedings of the 13th Symposium of AER, Dresden, Germany, Sept. 22–26, 2003, p. 123Search in Google Scholar

13 Lötsch, T.; Kovbasenko, Yu. P.: Benchmark Calculation with the Codes NESSEL and CASMO. Proceedings of the 14th Symposium of AER, Espoo, Finland, 13–17.09.2004, p. 81Search in Google Scholar

14 Lötsch, T.; Kuchin, A.; Ovdiyenko, Yu.: Comparison of CASMO and NESSEL few group cross section libraries and their usage in DYN3D. Proceedings of the 17th Symposium of AER, Yalta, Crimea, Ukraine, September 24–29, 2007, p. 217Search in Google Scholar

Received: 2014-01-30
Published Online: 2014-08-21
Published in Print: 2014-08-28

© 2014, Carl Hanser Verlag, München

Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110455/html
Scroll to top button