Home Technology Engineering factors of the macrocode MOBY-DICK
Article
Licensed
Unlicensed Requires Authentication

Engineering factors of the macrocode MOBY-DICK

  • J. Švarný , M. Šašek and S. Štech
Published/Copyright: August 21, 2014
Become an author with De Gruyter Brill

Abstract

In this paper a process of determination of methodological component of power distribution engineering factors of the macrocode MOBY-DICK (MD) is presented. This process is based on a direct comparison of measured and calculated data. The directly measured data analyzed in this article are thermocouple (TC) and Rhodium self-powered neutron detector (SPND) readings. Also the normality of deviations between measured and calculated TC temperature rises is discussed and methodological uncertainties of the macrocode MD are then checked by 97.5th percentile. Absolute and relative uncertainties of volumetric (KV) and radial (Kq) power distributions are determined by the comparisons of power distributions calculated by MD code with either power distributions provided by the Dukovany NPP core monitoring system (SCORPIO) or with power distributions obtained from direct TC and SPND readings. Final determination of engineering factors supposes hyperbolic dependence of MD methodological uncertainties on power peaking.

Kurzfassung

In diesem Beitrag wird die Bestimmung der Einflussfaktoren der Leistungsverteilung im Makrocode MOBY-DICK (MD) vorgestellt. Diese Methode basiert auf dem direkten Vergleich von gemessenen und berechneten Daten. Als Messwerte werden in diesem Beitrag Temperaturen und Leistungsverteilungen herangezogen. Die Normalverteilung der Abweichungen zwischen Mess- und Rechenwerten der Temperaturen werden diskutiert und methodische Unsicherheiten innerhalb MOBY-DICKs werden mit Hilfe der 97,5 Perzentilen überprüft. Als Messwerte der Leistungsverteilungen werden Daten des KKW Dukovany und direkte Temperatur- und Neutronenmesswerte verwendet. Die daraus abgeleiteten Einflussfaktoren im Programm MOBY-DICK basieren auf der Annahme der hyperbolischen Abhängigkeit der Unsicherheiten von den Leistungsdaten.

References

1 Švarný, J.: The methodological components of the engineering factors and their alternative determination. Proceedings of 22nd Symposium AER on VVER Reactor Physics and Reactor Safety, Pruhonice, Czech Republic, October 2012Search in Google Scholar

2 Shishkov, L.; Dementiev, V.; Oleksiuk, D.: Engineering margin factor estimation procedure for VVER cycles. National Research Centre Kurchatov Institute, Russia, Moscow, WG H AER, 2012Search in Google Scholar

3 Shiskov, L. et al.: Development of engineering margin factors for the new Dukovany NPP fuel to be operated at thermal power increased to 1485 MW. Russian documentation, 2012Search in Google Scholar

4 Mikoláš, P.; Švarný, J.; Sprinzl, D.; Krýsl, V.: “Fullcore” benchmark for VVER-440. 22nd Symposium of AER on VVER Reactor Physics and Reactor Safety October, 2012, Prhonice, Czech RepublicSearch in Google Scholar

5 Šašek, M.; Švarný, J.; Krýsl, V.: σmet calculation using measured and calculated temperature rises. 22nd Symposium of AER on VVER Reactor Physics and Reactor Safety October, 2012, Prhonice, Czech RepublicSearch in Google Scholar

6 Brik, A.; Oleksiuk, D.: On the method of moving of incomplete coolant mixing correction in the nozzle of VVER-440 assembly. Correction of power assembly using thermocouples readings. Proceedings of 16th Symposium of AER on VVER Reactor Physics and Safety, Bratislava, Slovakia, September, 2006Search in Google Scholar

7 Brik, A.; Oleksiuk, D.: Comparison of calculated and measured values of fuel assembly relative power for units 3 and 4 of Kola NPP. Proceedings of 17th Symposium of AER on VVER Reactor Physics and Safety, Yalta, Crimea, Ukraine, 2007Search in Google Scholar

Received: 2014-01-28
Published Online: 2014-08-21
Published in Print: 2014-08-28

© 2014, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110450/html
Scroll to top button