Development of approximation method to evaluate isotopic composition of burnt fuel
-
S. S. Aleshin
Abstract
This paper deals with the development of an approximation method to evaluate the isotopic composition of burnt VVER fuel rods (with U-Gd) by engineering codes (TVS-M, PERMAK-A) and taking into account fuel rods depletion conditions. Burn-up conditions for fuel rods differ from each other during operation due to the presence of water cavities, absorber and other within FA. Therefore, the isotopes evolution during burn-up in different fuel rods goes on in different manner even with identical values of fuel burn-up (MW · day/kg U). The isotopic content evolution can be described in detail by spectral codes. However, a full-size core calculation takes much running time. The approximation method, which takes into account fuel rods spectral differences during operation, was considered. The method is based on spectral functionality (a non asymptotic factor) usage, which allows to take into account the spectral conditions and history of exposure.
Kurzfassung
In diesem Beitrag wird die Entwicklung einer Näherungsmethode zur Abschätzung der Isotopenzusammensetzung von U-Gd haltigen abgebrannten WWER Brennstäben mit den Programmen TVS-M und PERMAK-A beschrieben. Die im Betrieb erzielten Abbrandzustände einzelner Brennelemente unterscheiden sich erheblich z. B. infolge lokal unterschiedlicher Kühlwasser- und Absorberbedingungen. So ist es möglich, dass bei gleichen Abbrandwerten die Isotopenzusammensetzungen in verschiedenen Brennstäben unterschiedlich sind. Zur Beschreibung der verschiedenen Isotopenzusammensetzungen werden Spektralcodes eingesetzt. Diese benötigen jedoch für eine Berechnung eines vollständigen Kerns sehr lange Rechenzeiten. Daher wurde eine schneller laufende Berechnungsmethode unter Berücksichtigung von Näherungen entwickelt. Dabei wird ein sog. nicht asymptotischer Faktor definiert, mit dessen Hilfe die Spektralbedingungen und die Bestrahlungshistorie berücksichtigt werden.
References
1 TVS-M Code (TVS-M Version 1.4). Software registration No. 611 of 31.07.2006. Software qualification certificate No. 239 of 23.09.2008.Search in Google Scholar
2 Bilodid, Y.; Mittag, S.: Spectral-history modeling in DYN3D burnup calculations. Workshop on VVER-Reactor Physics, July 2009Search in Google Scholar
3 Baturin, D. M.; Vygovskij, S. B.: Taking into account the spectral burnup history during preparation of the neutron constants (nc) for the WWER-1000 Fuel Assembly. Atomic Energy90 (2001) 267–27210.1023/A:1011369130707Search in Google Scholar
4 Cabellos, O.; Aragones, J. M.: Generalized effects in two-group cross sections and discontinity factors for PWR's. PHYSOR96, v. 1, B-82, September 16–20, 1996Search in Google Scholar
5 Bolobov, P. A.; Lazarenko, A. P.; Tomilov, M. Ju.: Development of the code package KASKAD for calculations of VVERs. 19th SYMPOSIUM of AER, 2009Search in Google Scholar
© 2014, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Editorial
- Editorial
- Technical Contributions/Fachbeiträge
- Highly enriched alternatives of VVER-440 fuel assembly
- “FULL-CORE” VVER-440 calculation benchmark
- Development of approximation method to evaluate isotopic composition of burnt fuel
- Fuel assembly burnup calculations for VVER fuel assemblies with the MONTE CARLO code SERPENT
- Solution of the CB6 benchmark on VVER-440 final disposal using the Serpent reactor physics code
- Development and verification of new nodal methods in the KIKO3DMG code
- HPLWR fine mesh core analysis
- Assessment of reactor scram effectiveness based on measured worth of separate CR groups
- Engineering factors of the macrocode MOBY-DICK
- CFD investigation of flow in the MATIS-H test facility
- Investigation of the hot-channel calculation methodology in case of shroud-less assemblies
- Assessment of the uncertainties of COBRA sub-channel calculations by using a PWR type rod bundle and the OECD NEA UAM and the PSBT benchmarks data
- Comparison analysis of effectiveness of diagnostic methods of local coolant boiling in WWER core
- Sensitivity of hydrodynamic parameters' distributions in VVER-1000 reactor pressure vessel (RPV) with respect to uncertainty of the local hydraulic resistance coefficients
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Editorial
- Editorial
- Technical Contributions/Fachbeiträge
- Highly enriched alternatives of VVER-440 fuel assembly
- “FULL-CORE” VVER-440 calculation benchmark
- Development of approximation method to evaluate isotopic composition of burnt fuel
- Fuel assembly burnup calculations for VVER fuel assemblies with the MONTE CARLO code SERPENT
- Solution of the CB6 benchmark on VVER-440 final disposal using the Serpent reactor physics code
- Development and verification of new nodal methods in the KIKO3DMG code
- HPLWR fine mesh core analysis
- Assessment of reactor scram effectiveness based on measured worth of separate CR groups
- Engineering factors of the macrocode MOBY-DICK
- CFD investigation of flow in the MATIS-H test facility
- Investigation of the hot-channel calculation methodology in case of shroud-less assemblies
- Assessment of the uncertainties of COBRA sub-channel calculations by using a PWR type rod bundle and the OECD NEA UAM and the PSBT benchmarks data
- Comparison analysis of effectiveness of diagnostic methods of local coolant boiling in WWER core
- Sensitivity of hydrodynamic parameters' distributions in VVER-1000 reactor pressure vessel (RPV) with respect to uncertainty of the local hydraulic resistance coefficients