Home Technology HPLWR fine mesh core analysis
Article
Licensed
Unlicensed Requires Authentication

HPLWR fine mesh core analysis

  • E. Temesvári , Cs. Maráczy , Gy. Hegyi , G. Hordósy and A. Molnár
Published/Copyright: August 21, 2014
Become an author with De Gruyter Brill

Abstract

The European version of Supercritical Water Reactors (SCWR), the High Performance Light Water Reactor (HPLWR) operates in the thermodynamically supercritical region of water. Our basic objective was to elaborate a stationary coupled neutronic-thermohydraulic code capable for the calculation of the actual 3-pass core design with fuel assembly clusters. The calculations covered the neutronic transport calculations of HPLWR fuel assemblies, the coupled neutronic-thermohydraulic global calculations and the pin-wise analysis. Applying conservative assumptions, the relation to the linear heat rate and maximum cladding temperature limits was checked for the equilibrium cycle of HPLWR with this new code system.

Kurzfassung

Die europäische Version des superkritischen Wasserreaktors, der sog. High Performance Light Water Reactor (HPLWR), arbeitet im superkritischen Bereich des Wassers. In diesem Beitrag wird die Entwicklung eines stationären gekoppelten Codes zur Berechnung des aktuellen 3-Wege Kerndesigns mit HPLWR Brennelementen beschrieben. Dabei berücksichtigen die Berechnungen die Neutronentransportgleichungen der Brennelemente, die gekoppelten Neutronen-Thermohydraulikrechnungen und die Einzelstabanalyse. Mit konservativen Annahmen wurde die Beziehung der linearen Wärmerate und der maximalen Hüllrohrtemperaturgrenzen für den Gleichgewichtszyklus eines HPLWR überprüft.

References

1 Schulenberg, T.; Maraczy, Cs.; Heinecke, J.; Bernnat, W.: Design and Analysis of a Thermal Core for a High Performance Light Water Reactor. Nuclear Engineering and Design241 (2011) 442010.1016/j.nucengdes.2010.09.025Search in Google Scholar

2 Schulenberg, T.; Starflinger, J.; Heinecke, J.: Three pass core design proposal for a high performance light water reactor. Progress in Nuclear Energy50 (2008) 52610.1016/j.pnucene.2007.11.038Search in Google Scholar

3 Maráczy, Cs.; Hegyi, Gy.; Hordósy, G.; Temesvári, E.: HPLWR equilibrium core design with the KARATE code system. Progress in Nuclear Energy53 (2011) 26710.1016/j.pnucene.2010.12.002Search in Google Scholar

4 Derstine, K. L.: DIF3D: A Code to Solve One-, Two, and Three-Dimensional Finite-Difference Diffusion Theory Problems. ANL-82-64, Argonne National Laboratory, USA (1984)10.2172/7157044Search in Google Scholar

5 Keresztúri, A.; Hegyi, Gy.; Korpás, L.; Maráczy, Cs.; Makai, M.; Telbisz, M.: General features and validation of the recent KARATE-440 code system. Int. J. Nuclear Energy Science and Technology5 (2010) 20710.1504/IJNEST.2010.033476Search in Google Scholar

6 J.Heinecke: Personal communication (2009)Search in Google Scholar

7 Watts, M. J.; Chou, C. T.: Mixed convection heat transfer to supercritical pressure water. Proceedings of the 7th IHTC, Munchen, Germany, p. 495 (1982)10.1615/IHTC7.2970Search in Google Scholar

Received: 2014-01-28
Published Online: 2014-08-21
Published in Print: 2014-08-28

© 2014, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110465/html
Scroll to top button