Startseite Comparison of sensitivity and uncertainty in Gd and Er containing fuels for VVER-1000 using TSUNAMI-2D
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Comparison of sensitivity and uncertainty in Gd and Er containing fuels for VVER-1000 using TSUNAMI-2D

  • J. Frýbort
Veröffentlicht/Copyright: 21. Oktober 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Computer calculations important for safe operation of nuclear reactors are inherently affected by uncertainties. These originate mostly in numerical method applied, the calculated system model developed by the user, and finally there are fundamental uncertainties in nuclear data. This analysis is aimed at comparison of uncertainties in nuclear data affecting model of VVER-1000 fuel assembly containing either gadolinium or erbium as a burnable absorber using TSUNAMI-2D. This tool for quantitative determination of nuclear data uncertainties is being developed in Oak Ridge National Laboratory (USA). This tool works with 1D and 2D deterministic calculations and 3D Monte-Carlo calculations and processes the results. Output of the calculation is a complete characterization of the solved system with an overall uncertainty of multiplication factor determination. Furthermore, different system responses can be defined (e.g. pin power peaking) and their sensitivity to nuclear data in dependence on neutron energy is determined.

Kurzfassung

Berechnungen mit Programmen sind von Natur aus mit Unsicherheiten behaftet. Diese resultieren im wesentlichen aus den angewendeten numerischen Verfahren, den vom Anwender ausgewählten Berechnungsmodelloptionen und den in den Unsicherheiten der zugrundeliegenden Kerndaten. In diesem Beitrag wird das Programm TSUNAMI-2D genutzt, um den Einfluss der Unsicherheiten der Kerndaten für ein WWER-1000-Brennelementmodell aufzuzeigen. Dabei wird als brennbares Absorbermaterial einmal Gadolinium und einmal Erbium berücksichtigt. TSUNAMI-2D wurde am Oak Rdge National Laboratory in den USA entwickelt und verwendet deterministische 1D- und 2D- sowie 3D-Monte-Carlo-Berechnungen. Als Ergebnis der Berechnungen wird eine vollständige Charakterisierung des Lösungssystems mit der Bestimmung der allgemeinen Unsicherheit der Mulitplikationsfaktoren bestimmt. Darüber hinaus können verschiedene Reaktionen des Systems definiert werden und deren Einfluss auf die Kerndaten in Abhängigkeit von der Neutronenenergie bestimmt werden.

References

1 Rearden, B. T.; Jessee, M. A.; Williams, M. L.: TSUNAMI-1D: Control Module for One-Dimensional Cross-Section Sensitivity and Uncertainty. ORNL, Oak Ridge Tennessee, USA, June 2011Suche in Google Scholar

2 Childs, R. L.: Generalized Perturbation Theory Using Two-Dimensional, Discrete Ordinates Transport Theory. ORNL, Oak Ridge Tennessee, USA, 198010.2172/5261569Suche in Google Scholar

3 U.S. Department of Energy: DOE Fundamentals Handbook: Nuclear Physics and Reactor Theory. Vol. 2, Washington, USA, January 1993Suche in Google Scholar

4 Chadwick, M. B.; Herman, M.; Oblozinsky, P.; et al.: ENDF/B-VII.1 nuclear data for science and technology: Cross sections, covariances, fission product yields and decay data. Nuclear Data Sheets, 112 (2011) 2887299610.1016/j.nds.2011.11.002Suche in Google Scholar

5 Sugimura, N.; Imamura, M.; Mori, M.: The Concept of Erbia Bearing Super-High-Burnup Fuel, Advances in Nuclear Fuel Management. American Nuclear Society, USA, 2009Suche in Google Scholar

Received: 2013-2-13
Published Online: 2013-10-21
Published in Print: 2013-08-28

© 2013, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Editorial
  6. Selected contributions to the XXIInd symposium of the Atomic Energy Research organization
  7. Technical Contributions/Fachbeiträge
  8. Fuel cycles of WWER-440: results of basic design modification
  9. Use of erbium as burnable poison for VVER reactors
  10. The estimation of the control rods absorber burn-up during the VVER-1000 operation
  11. The main characteristic of the evolution project SuperVVER with spectrum shift regulation
  12. Automatic loading pattern optimization tool for Loviisa VVER-440 reactors
  13. Uncertainties of the neutronic calculations at core level determined by the KARATE code system and the KIKO3D code
  14. The reactor dynamics code DYN3D and its trigonal-geometry nodal diffusion model
  15. Comparison of sensitivity and uncertainty in Gd and Er containing fuels for VVER-1000 using TSUNAMI-2D
  16. Contribution of the number of measured data to calculation uncertainty in the worth of VVER control rods
  17. A comparison of the FA's models with the detailed and simplified description in the MCU code calculations
  18. Account for uncertainties of control measurements in the assessment of design margin factors
  19. Results of precision calculations of three-dimensional power density in VVER-1000 core with feedbacks using MCU code
  20. CFD analysis of temperature deviations in Gd assembly heads
  21. Application of statistical uncertainty and sensitivity evaluations to a PWR LBLOCA analysis calculated with the code ATHLET. Part 1: uncertainty analysis
  22. Post test calculations of a severe accident experiment for VVER-440 reactors by the ATHLET code
  23. The impact on the competence on severe accidents following the Fukushima event
Heruntergeladen am 29.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110383/html
Button zum nach oben scrollen