Startseite Use of erbium as burnable poison for VVER reactors
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Use of erbium as burnable poison for VVER reactors

  • A. Pavlovichev , E. Kosourov , A. Shcherenko , V. Saprykin , A. Lazarenko , S. Aleshin und A. Shcherenko
Veröffentlicht/Copyright: 21. Oktober 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Problems related to use of Erbium as burnable poison for VVER are discussed. Comparison is made between neutronics characteristics of Uranium-Gadolinium and Uranium-Erbium fuel cycles. The study shows that use of Erbium as burnable poison allows decreasing the peaking factor in the core. Meanwhile residual Erbium at the end of the fuel cycle makes it necessary to increase fuel enrichment. There is made the conclusion of prospects of using Erbium as burnable poison for VVER.

Kurzfassung

Vor- und Nachteile des Einsatzes von Erbium als Reaktorgift in WWER Reaktoren werden vorgestellt. Dazu werden die Neutronenparameter der Brennstoffzyklen beim Einsatz von Uran-Gadolinium und von Uran-Erbium verglichen. Die Untersuchung zeigt, dass der Einsatz von Erbium als Reaktorgift eine Absenkung des Peakfaktors der Leistungsverteilung im Kern erlaubt. Gleichzeitig erfordert der Restwert des Erbiums am Ende eines Brennstoffzyklus eine höhere Anreicherung des Brennstoffs. Als Fazit werden die positiven Erwartungen an die Nutzung von Erbium zusammengefasst.


8Anastasia Shcherenko (corresponding author), E-mail:

References

1 Kosourov, E.; Pavlov, V.; Pavlovichev, A.: Fuel Cycle of VVER-1000: technical and economic aspects. – In: Proc. of the 8-th International Conference WWER Fuel. Performance, Modelling and Experimental Support, Burgas, Bulgaria, Sept. 26 – Oct.4, 2009, p. 120127Suche in Google Scholar

2 Kosourov, E.; Pavlovichev, A.; Shcherenko, A.: Fuel Cycles of WWER-1000 Based on Assemblies with Increased Fuel Mass. – In: Proc. of the 9-th International Conference WWER Fuel. Performance, Modelling and Experimental Support, Burgas, Bulgaria, Sept. 17–24, 2011, p. 150158Suche in Google Scholar

3 Optimum Cycle Length and Discharge Burnup for Nuclear Fuel: Phase II: Results Achievable with Enrichments Greater than 5.0 w/o. EPRI, Palo Alto, CA and U.S. Department of Energy, Washington, DC: 2002. 1003217Suche in Google Scholar

4 Renier, J.-P. A.; Grossbeck, M. L.: Development of improved burnable poisons for commercial nuclear power reactors. ORNL/TM-2001/238, Oak Ridge National Laboratory, 200110.2172/814398Suche in Google Scholar

5 Bystrikov, A. A.; Egorov, A. K.; Ivanov, V. I.; Burlakov, E. V.; Krayushkin, A. V.; Fedosov, A. M. et al.: Experience in use of uranium-erbium fuel in power units with RBMK reactors. Atomnaya Energiya.100 (2006) 165170Suche in Google Scholar

6 Novikov, A. N.: Development of VVER physical calculation codes. – In: Proc. of the tenth Symp. of AER. Moscow, Russia, Oct. 18–22, 2000, v. 1, p. 433448Suche in Google Scholar

7 Aleshin, S. S.; Bolobov, P. A.; Bolshagin, S. N. et al.: Verification of third generation code package for VVER. – Ibid., p. 169227Suche in Google Scholar

8 Alekseev, N. I.; Gomin, E. A.; Gorodkov, S. S. et al.: Development of MCU-PD2006 code for calculation of neutron physics characteristics for NPP-2006 VVER-1200 reactor cores with use of Monte Carlo method for solving neutron transfer equations on the basis of information from estimated nuclear data files. INR RRC KI report. Inv. No. 36-03/18-08, M., 2008Suche in Google Scholar

9 ENDF-102. “Data Formats and Procedures for the Evaluated Nuclear Data Files ENDF7”, July 1990, National Nuclear Data Center, Brookhaven National Laboratory, Upton, New York, 11973Suche in Google Scholar

Received: 2013-2-1
Published Online: 2013-10-21
Published in Print: 2013-08-28

© 2013, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Editorial
  6. Selected contributions to the XXIInd symposium of the Atomic Energy Research organization
  7. Technical Contributions/Fachbeiträge
  8. Fuel cycles of WWER-440: results of basic design modification
  9. Use of erbium as burnable poison for VVER reactors
  10. The estimation of the control rods absorber burn-up during the VVER-1000 operation
  11. The main characteristic of the evolution project SuperVVER with spectrum shift regulation
  12. Automatic loading pattern optimization tool for Loviisa VVER-440 reactors
  13. Uncertainties of the neutronic calculations at core level determined by the KARATE code system and the KIKO3D code
  14. The reactor dynamics code DYN3D and its trigonal-geometry nodal diffusion model
  15. Comparison of sensitivity and uncertainty in Gd and Er containing fuels for VVER-1000 using TSUNAMI-2D
  16. Contribution of the number of measured data to calculation uncertainty in the worth of VVER control rods
  17. A comparison of the FA's models with the detailed and simplified description in the MCU code calculations
  18. Account for uncertainties of control measurements in the assessment of design margin factors
  19. Results of precision calculations of three-dimensional power density in VVER-1000 core with feedbacks using MCU code
  20. CFD analysis of temperature deviations in Gd assembly heads
  21. Application of statistical uncertainty and sensitivity evaluations to a PWR LBLOCA analysis calculated with the code ATHLET. Part 1: uncertainty analysis
  22. Post test calculations of a severe accident experiment for VVER-440 reactors by the ATHLET code
  23. The impact on the competence on severe accidents following the Fukushima event
Heruntergeladen am 28.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110371/html
Button zum nach oben scrollen