Startseite Application of statistical uncertainty and sensitivity evaluations to a PWR LBLOCA analysis calculated with the code ATHLET. Part 1: uncertainty analysis
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Application of statistical uncertainty and sensitivity evaluations to a PWR LBLOCA analysis calculated with the code ATHLET. Part 1: uncertainty analysis

  • Y. Kozmenkov und U. Rohde
Veröffentlicht/Copyright: 21. Oktober 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Usually, reactor safety analyses are based on the traditional conservative deterministic approach. An alternative approach to reactor safety analyses uses best estimate computer codes in combination with quantification of uncertainties in model and plant parameters. The German Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) has applied the methodology of uncertainty analysis based on the Wilks’ approach. According to this approach, the number of calculations required to perform a probabilistic estimation of an output parameter with a given coverage/confidence level (e.g., 95%/95%) does not depend on the number of input uncertainty parameters. In this paper, the results of an uncertainty analysis for a Large Break LOCA scenario for a generic German PWR of the Konvoi design are reported. All calculations were performed using the system code ATHLET Mod 2.2 Cycle A. The EXCEL-integrated software SUSA developed by GRS was used for generation of the uncertainty parameter vectors, their incorporation into ATHLET input files and for statistical evaluation of the results.

Kurzfassung

Üblicherweise basieren Reaktorsicherheitsanalysen auf der konservativ-deterministsichen Herangehensweise. Ein alternativer Weg besteht in einer best-estimate-Simulation in Kombination mit der Quantifizierung von Unsicherheiten in den Ergebnissen, die durch Unsicherheiten in Modellparametern und Randbedingungen bedingt sind. Die Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) hat eine Methodik für Unsicherheitsanalysen entwickelt und angewandt, die auf der Theorie von Wilks beruht. Danach hängt die Anzahl der Störfallrechnungen, die erforderlich ist, um einen Zielparameter mit einer bestimmten statistischen Abdeckung und einem Vertrauensgrad (z.B. 95%/95%) probabilistisch zu ermitteln, nicht von der Anzahl der unsicheren Parameter ab. In diesem Beitrag werden die Ergebnisse einer Unsicherheitsanalyse für ein Störfallszenarium mit großem Leck für einen generischen DWR Konvoi vorgestellt. Die Störfallrechnungen wurden mit dem Systemcode ATHLET Mod 2.2 Cycle A ausgeführt. Die EXCEL-basierte Software SUSA der GRS wurde für die Generierung der Vektoren unsicherer Parameter, ihre Integration in den Eingabedatensatz von ATHLET und die statistische Auswertung benutzt.


3 Dipl.-Eng. Yaroslav Kozmenkov (corresponding author), E-mail:

References

1 Martin, R. P.; O'Dell, L. D.: AREVA's realistic large break LOCA analysis methodology. Nuclear Engineering and Design235 (2005) 17131725Suche in Google Scholar

2 Glaeser, H.: GRS Method for Uncertainty and Sensitivity Evaluation of Code Results and Applications. Science and Technology of Nuclear Installations, Volume 2008, Article ID 79890110.1155/2008/798901Suche in Google Scholar

3 Wilks, S. S.: Determination of Sample Sizes for Setting Tolerance Limits. Ann. Math. Stat.12 (1941) 9196Suche in Google Scholar

4 Kloos, M.; Hofer, E.: SUSA Version 3.5. The PC Version of the Software System for Uncertainty and Sensitivity Analysis of Results from Computer Models. User's Guide and Tutorial. GRS, February 2002Suche in Google Scholar

5 AustregesiloH.; et. al.: ATHLET Mod 2.2 Cycle A. Models and Methods. GRS-P-1/Vol. 4, Rev. 2, July 2009Suche in Google Scholar

6 AustregesiloH.; et. al.: ATHLET Mod 2.2 Cycle A. Input Data Description. GRS-P-1/Vol. 1, Rev. 5, July 2009Suche in Google Scholar

7 Glaeser, H.; et. al.: Methodenentwicklung und exemplarische Anwendungen Bestimmung der Aussagesicherheit von Rechenprogrammergebnissen. Abschlußbericht GRS-A-3443, November 2008Suche in Google Scholar

8 Biasi, L.; et. al.: Studies on burnout, Part 3 – A new correlation for round ducts uniform heating and its comparison with world data. Energia Nucleare14 (1967)Suche in Google Scholar

9 Geelhood, K. J.; et.al.: Predictive Bias and Sensitivity in NRC Fuel Performance Codes. NUREG/CR-7001, PNNL-17644, U.S. NRC, October 2009, pp. 2.9, 2.11–2.12Suche in Google Scholar

10 Sunderland, D.: (ANATECH Corp.), Reflections on 25 years of LWR fuel modeling, challenges and contemporary issues. A Presentation to the Nuclear Science and Technology Interaction Program (NSTIP), Oak Ridge National Laboratory, July 8, 2011Suche in Google Scholar

11 ArtemovaL.M.; et. al.: Sensitivity analysis and verification of fuel rod model used in coupled neutronic and thermal-hydraulic codes, 17th AER Symposium on VVER Reactor Physics and Reactor Safety, 23–29 September 2007, Crimea, UkraineSuche in Google Scholar

12 Seeberger, G.-J.; Trewin, R.; Zeisler, L.-P.: From phenomena to acceptance criteria. A statistical LBLOCA analysis, Jahrestagung Kerntechnik, Berlin, 17–19 May 2011Suche in Google Scholar

13 Popov, S. G.; et. al.: Thermophysical properties of MOX and UO2 fuels the effects of irradiation. ORNL/TM-2000/351, July 2000Suche in Google Scholar

Received: 2013-3-15
Published Online: 2013-10-21
Published in Print: 2013-08-28

© 2013, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Editorial
  6. Selected contributions to the XXIInd symposium of the Atomic Energy Research organization
  7. Technical Contributions/Fachbeiträge
  8. Fuel cycles of WWER-440: results of basic design modification
  9. Use of erbium as burnable poison for VVER reactors
  10. The estimation of the control rods absorber burn-up during the VVER-1000 operation
  11. The main characteristic of the evolution project SuperVVER with spectrum shift regulation
  12. Automatic loading pattern optimization tool for Loviisa VVER-440 reactors
  13. Uncertainties of the neutronic calculations at core level determined by the KARATE code system and the KIKO3D code
  14. The reactor dynamics code DYN3D and its trigonal-geometry nodal diffusion model
  15. Comparison of sensitivity and uncertainty in Gd and Er containing fuels for VVER-1000 using TSUNAMI-2D
  16. Contribution of the number of measured data to calculation uncertainty in the worth of VVER control rods
  17. A comparison of the FA's models with the detailed and simplified description in the MCU code calculations
  18. Account for uncertainties of control measurements in the assessment of design margin factors
  19. Results of precision calculations of three-dimensional power density in VVER-1000 core with feedbacks using MCU code
  20. CFD analysis of temperature deviations in Gd assembly heads
  21. Application of statistical uncertainty and sensitivity evaluations to a PWR LBLOCA analysis calculated with the code ATHLET. Part 1: uncertainty analysis
  22. Post test calculations of a severe accident experiment for VVER-440 reactors by the ATHLET code
  23. The impact on the competence on severe accidents following the Fukushima event
Heruntergeladen am 29.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110379/html
Button zum nach oben scrollen