Startseite The reactor dynamics code DYN3D and its trigonal-geometry nodal diffusion model
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The reactor dynamics code DYN3D and its trigonal-geometry nodal diffusion model

  • S. Duerigen , U. Rohde , Y. Bilodid und S. Mittag
Veröffentlicht/Copyright: 21. Oktober 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The reactor dynamics code DYN3D is a three-dimensional best-estimate tool for simulating steady states and transients of light-water reactors and innovative reactor designs. An overview of the DYN3D features is provided. This paper further focuses on the recently developed trigonal-geometry diffusion model DYN3D-TRIDIF including a description of the underlying nodal approach and the characteristics of trigonal geometries. Via a mesh refinement study by means of a VVER-1000-type core benchmark using a fine-mesh diffusion reference solution, DYN3D-TRIDIF shows spatial convergence. Furthermore, the performance of DYN3D-TRIDIF is verified by means of a single-assembly problem on pin-cell level. Good agreement between DYN3D-TRIDIF and the detailed-geometry transport reference is achieved with an average deviation in power of less than 1%.

Kurzfassung

Das Reaktordynamikprogramm DYN3D ist ein dreidimensionaler “Best-Estimate”-Code zur Simulation stationärer und transienter Vorgänge in Leichtwasserreaktoren sowie in innovativen Reaktorsystemen. In diesem Artikel wird ein Überblick über die Funktionsvielfalt von DYN3D gegeben und eine der jüngsten Neutronik-Entwicklungen vorgestellt: das nodale Diffusionsmodell auf trigonaler Basis DYN3D-TRIDIF. Hierbei wird auf das zugrunde liegende nodale Verfahren sowie die Spezifika trigonaler Geometrie eingegangen. Mittels einer Untersuchung zur nodalen Gitterverfeinerung anhand eines VVER-1000-Benchmarks mit Feingitter-Diffusions-Referenzlösung wird die räumliche Konvergenz von DYN3D-TRIDIF gezeigt. Des Weiteren wird die Leistungsfähigkeit der Methode an einem Einzelbrennelementproblem auf Pin-Zell-Ebene verifiziert, wobei die DYN3D-TRIDIF-Ergebnisse mit einem mittleren Leistungsfehler kleiner 1% in guter Übereinstimmung mit der geometrisch detaillierten Transportreferenzlösung liegen.


5 Dr. Susan Duerigen (corresponding author), E-mail:

References

1 Selected safety aspects of WWER-440 model 213 nuclear power plants. Final report of the IAEA project on evaluation of safety aspects for WWER-440 model 213 nuclear power plants. Int. Atomic Energy Agency, Vienna, 1996, ISBN 92-0-101196-2Suche in Google Scholar

2 Krepel, J; Rohde, U.; Grundmann, U; Weiss, F.-P.: DYN3D-MSR spatial dynamics code for molten salt reactors. Annals of Nuclear Energy34 (2007) 44910.1016/j.anucene.2006.12.011Suche in Google Scholar

3 Rohde, U.; Baier, S.; Duerigen, S.; Fridman, E.; Kliem, S.; Merk, B.: Development and verification of the coupled 3D neutron kinetics/thermal-hydraulics code DYN3D-HTR for the simulation of transients in block-type HTGR. Nuclear Engineering and Design251 (2012) 41210.1016/j.nucengdes.2011.09.051Suche in Google Scholar

4 Fridman, E.; Shwageraus, E.: Modeling of SFR cores with Serpent-DYN3D codes sequence. Annals of Nuclear Energy53 (2013) 35410.1016/j.anucene.2012.08.006Suche in Google Scholar

5 Rachamin, R.; Wemple, C.; Fridman, E.: Neutronic analysis of SFR core with HELIOS-2, SERPENT, and DYN3D codes. Annals of Nuclear Energy55 (2013) 19410.1016/j.anucene.2012.11.030Suche in Google Scholar

6 Duerigen, S: Neutron Transport in Hexagonal Reactor Cores Modeled by Trigonal-Geometry Diffusion and Simplified P3 Nodal Methods. PhD thesis, Karlsruhe Institute of Technology, 2013. http://digbib.ubka.uni-karlsruhe.de/volltexte/1000034870.Suche in Google Scholar

7 Grundmann, U.; Rohde, U.; Mittag, S.; Kliem, S.: DYN3D version 3.2 – code for calculation of transients light water reactors (LWR) with hexagonal or quadratic fuel elements – description of models and methods. Tech. Report FZR-434, Forschungszentrum Rossendorf (FZR) August 2005Suche in Google Scholar

8 Rohde, U.; Mittag, S.; Grundmann, U.; Petkov, P.; Hadek, J.: Application of a stepwise verification and validation procedure to the 3D neutron kinetics code DYN3D within the European NURESIM project. Proc. 17th Int. Conf. on Nuclear Engineering (ICONE17) Brussels, Belgium, July 12–16 200910.1115/ICONE17-75446Suche in Google Scholar

9 Beckert, C.; Grundmann, U.: Development and verification of a nodal approach for solving the multigroup SP3 equations. Annals of Nuclear Energy35 (2008) 7510.1016/j.anucene.2007.05.014Suche in Google Scholar

10 Duerigen S.; Fridman, E.: The simplified P3 approach on a trigonal geometry of the nodal reactor code DYN3D. Kerntechnik77 (2012) 226Suche in Google Scholar

11 Grundmann, U.: HEXNEM – a nodal method for the solution of the neutron diffusion equation in hexagonal geometry. Proc. Int. Conf. on Mathematics and Computation. Reactor Physics and Environmental Analysis in Nuclear Applications (M&C '99) Madrid, Spain, September 27–30 1999Suche in Google Scholar

12 Grundmann, U.; Hollstein, F.: A two-dimensional intranodal flux expansion method for hexagonal geometry. Nuclear Science and Engineering133 (1999) 201Suche in Google Scholar

13 Manera, A.; Rohde, U.; Prasser, H.-M.; van der Hagen, T. H. J. J.: Modelling of flashing-induced instabilities in the start-up phase of natural-circulation BWRs using the code FLOCAL. Nuclear Engineering and Design235 (2005) 1517Suche in Google Scholar

14 Rohde, U.; Lucas, D.: Solution of the 4th AER dynamic benchmark by use of the code DYN3D with a particle-in-cell method for the description of boron transport. 7th AER Symposium on VVER Reactor Physics and Reactor Safety, Hoernitz near Zittau, Germany, September 23–26 1997, p 387Suche in Google Scholar

15 Rohde, U.: The modeling of fuel rod behaviour under RIA conditions in the code DYN3D. Annals of Nuclear Energy28 (2001) 134310.1016/S0306-4549(00)00128-6Suche in Google Scholar

16 Mittag, S.; Kliem, S.; Weiss, F.-P.; Kyrki-Rajamaki, R.; Hamalainen, H.; Langenbuch, S.; Danilin, S.; Hadek, J.; Hegyi, G.; Kuchin, A.; Panayotov, D.: Validation of coupled neutron kinetic/thermal-hydraulic codes Part 1: Analysis of a VVER-1000 transient (Balakovo-4). Annals of Nuclear Energy28 (2001) 85710.1016/S0306-4549(00)00095-5Suche in Google Scholar

17 Hadek, J.; Grundmann, U.: Neutron flux reconstruction in a hexagonal cassette – theory and implementation into the code DYN3D/H1.1. Nucleon3 (1997) 8Suche in Google Scholar

18 Bilodid, I.; Mittag, S.: Use of the local Pu-239 concentration as an indicator of burnup spectral history in DYN3D. Annals of Nuclear Energy37 (2010) 120810.1016/j.anucene.2010.04.019Suche in Google Scholar

19 Fridman, E.; Duerigen, S.; Bilodid, Y.; Kotlyar, D.; Shwageraus, E.: Axial discontinuity factors for the nodal diffusion analysis of high conversion BWR cores. Annals of Nuclear Energy62 (2013) 129Suche in Google Scholar

20 Grundmann, U.; Mittag, S.: Super-homogenisation factors in pinwise calculations by the reactor dynamics code DYN3D. Annals of Nuclear Energy38 (2011) 211110.1016/j.anucene.2011.06.030Suche in Google Scholar

21 Austregesilo, H.; Bals, C.; Hora, A.; Lerchl, G.; Romstedt, P.: ATHLET, Mod 2.1 Cycle A, Models and Methods. GRS – P – 1/Vol. 4, Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, Germany, 2006Suche in Google Scholar

22 NUREG/CR-5535/Rev 1, RELAP5/MOD3.3 code manual. Volume I: Code Structure, System Models, and Solution Methods. December 2001, Idaho Falls, Idaho, USASuche in Google Scholar

23 Grundmann, U.; Lucas, D.; Rohde, U.: Coupling of the thermohydraulic code ATHLET with the neutron kinetic core model DYN3D. Proc. Int. Conf. on Mathematics and Computations, Reactor Physics and Environmental Analyses, Portland, Oregon, USA, April 30-May 4 1995Suche in Google Scholar

24 Kozmenkov, Y.; Orekhov, Y.; Grundmann, U.; Kliem, S.; Rohde, U.; Seidel, A.: Development and benchmarking of the DYN3D/RELAP code system. Annual Meeting of the German Nuclear Society, Dresden, Germany, May 15–17 2001Suche in Google Scholar

25 Kliem, S.; Mittag, S.; Rohde, U.; Weiß, F.-P.: ATWS analysis for PWR using the coupled code system DYN3D/ATHLET. Annals of Nuclear Energy36 (2009) 123010.1016/j.anucene.2009.04.001Suche in Google Scholar

26 Kliem, S.; Rohde, U.; Weiß, F.-P.: Core response of a PWR to a slug of under-borated water. Nuclear Engineering and Design230 (2004) 121Suche in Google Scholar

27 Sánchez, V.; Imke, U.; Gomez, R.: SUBCHANFLOW: A thermal-hydraulic sub-channel program to analyse fuel rod bundles and reactor cores. 17th Pacific Basin Nuclear Conference, Cancún, Q. R., México, October 24–30 2010Suche in Google Scholar

28 Gomez-Torres, A. M.; Sanchez-Espinoza, V. H.; Ivanov, K.; Macian-Juan, R.: DYNSUB: A high fidelity coupled code system for the evaluation of local safety parameters – Part I: Development, implementation and verification. Annals of Nuclear Energy48 (2012) 108Suche in Google Scholar

29 Kliem, S.; Gommlich, A.; Grahn, A.; Rohde, U.; Schütze, J.; Frank, T.; Gomez, A.; Sanchez, V.: Development of multi-physics code systems based on the reactor dynamics code DYN3D. Kerntechnik76 (2011) 160Suche in Google Scholar

30 Lassmann, K.: TRANSURANUS: a fuel rod analysis code ready for use. Journal of Nuclear Materials188 (1992) 295Suche in Google Scholar

31 Finnemann, H.; Bennewitz, F.; Wagner, M. R.: Interface current techniques for multidimensional reactor calculations. Atomkernenergie30 (1977) 123Suche in Google Scholar

32 Koebke, K.; Hetzelt, L; Wagner, M. R.; Winter, H.-J.: Principles and application of advanced nodal reactor analysis methods. Proc. Topical Meeting on Reactor Physics and Shielding, Chicago, Illinois, USA, September 17–19 1984Suche in Google Scholar

33 Cho, N. Z.; Kim, Y. H.; Park, K. W.: Extension of analytic function expansion nodal method to multigroup problems in hexagonal-z geometry. Nuclear Science and Engineering, 126 (1997) 35Suche in Google Scholar

34 Noh, J. M.; Cho, N. Z.: A new approach of analytic basis function expansion to neutron diffusion nodal calculation. Nuclear Science and Engineering116 (1994) 165Suche in Google Scholar

35 Downar, T. J.; Lee, D.; Xu, Y.; Kozlowski, T.; Staudenmier, J.: PARCS v2.6 U. S. NRC Core Neutronics Simulator. Theory Manual (Draft) 2004Suche in Google Scholar

36 Kochunas, B.; Xu, Y.; Downar, T. J.: Development of the triangular nodal method TRIPEN for prismatic HTR analysis. Proc. PHYSOR 2010 – Advances in Reactor Physics to Power the Nuclear Renaissance, Pittsburgh, Pennsylvania, USA, May 9–14 2010Suche in Google Scholar

37 Chao, Y. A.; Shatilla, Y. A.: Conformal mapping and hexagonal nodal methods – II: Implementation in the ANC-H code. Nuclear Science and Engineering121 (1995) 210Suche in Google Scholar

38 Derstine, K. L.: DIF3D: A code to solve one-, two-, and three-dimensional finite-difference diffusion theory problems. Tech. Report ANL-82-64, Argonne National Laboratory, 198410.2172/7157044Suche in Google Scholar

39 Loetsch, T.; Khalimonchuk, V.; Kuchin, A.: Proposal of a benchmark for core burnup calculations for a VVER-1000 reactor core. Proc. 19th Symposium of AER on VVER Reactor Physics and Reactor Safety, Varna, Bulgaria, September 21–25 2009Suche in Google Scholar

40 Casal, J. J.; Stamm'ler, R. J. J.; Villarino, E. A.; Ferri, A. A.: HELIOS: geometric capabilities of a new fuel assembly program. Proc. Int. Topical Meeting on Advances in Mathematics, Computations and Reactor Physics, Pittsburgh, Pennsylvania, USA, April 28 – May 2 1991Suche in Google Scholar

Received: 2013-3-6
Published Online: 2013-10-21
Published in Print: 2013-08-28

© 2013, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Editorial
  6. Selected contributions to the XXIInd symposium of the Atomic Energy Research organization
  7. Technical Contributions/Fachbeiträge
  8. Fuel cycles of WWER-440: results of basic design modification
  9. Use of erbium as burnable poison for VVER reactors
  10. The estimation of the control rods absorber burn-up during the VVER-1000 operation
  11. The main characteristic of the evolution project SuperVVER with spectrum shift regulation
  12. Automatic loading pattern optimization tool for Loviisa VVER-440 reactors
  13. Uncertainties of the neutronic calculations at core level determined by the KARATE code system and the KIKO3D code
  14. The reactor dynamics code DYN3D and its trigonal-geometry nodal diffusion model
  15. Comparison of sensitivity and uncertainty in Gd and Er containing fuels for VVER-1000 using TSUNAMI-2D
  16. Contribution of the number of measured data to calculation uncertainty in the worth of VVER control rods
  17. A comparison of the FA's models with the detailed and simplified description in the MCU code calculations
  18. Account for uncertainties of control measurements in the assessment of design margin factors
  19. Results of precision calculations of three-dimensional power density in VVER-1000 core with feedbacks using MCU code
  20. CFD analysis of temperature deviations in Gd assembly heads
  21. Application of statistical uncertainty and sensitivity evaluations to a PWR LBLOCA analysis calculated with the code ATHLET. Part 1: uncertainty analysis
  22. Post test calculations of a severe accident experiment for VVER-440 reactors by the ATHLET code
  23. The impact on the competence on severe accidents following the Fukushima event
Heruntergeladen am 29.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110382/html
Button zum nach oben scrollen