Home Technology The main characteristic of the evolution project SuperVVER with spectrum shift regulation
Article
Licensed
Unlicensed Requires Authentication

The main characteristic of the evolution project SuperVVER with spectrum shift regulation

  • P. N. Alekseev , A. V. Chibinyaev , V. F. Gorohov and P. S. Teplov
Published/Copyright: October 21, 2013
Become an author with De Gruyter Brill

Abstract

The researches on the increase of achievable fuel burn-up in light water reactors (LWR) with so-called “spectrum shift” have been carried out in the world for a long time. The main idea of the “spectrum shift” is based on neutron spectrum shifting from the resonance energy region at the beginning of the cycle to the thermal region at the end of the cycle. There are many different ways of such regulation in the core – starting from coolant density variation during reactor cycle, to changing water-uranium ratio with some mechanical equipment. Spectrum shift regulation with depleted uranium or zirconium displacers is presented in this paper for uranium and mixed uranium and plutonium oxide (MOX) fuel loadings. New fuel assemblies with special guide tubes for displacers were developed for these purposes.

Kurzfassung

Untersuchungen zur Erhöhung des erreichbaren Brennstoffabbrands in Leichtwasserreaktoren durch eine Verschiebung des Neutronenspektrums (Spektral-Shift) werden weltweit seit langem durchgeführt. Die Hauptidee der Spektral-Shift basiert auf der Verschiebung des Neutronenspektrums aus dem Resonanzenergiebereich zu Beginn des Zyklus hin zum thermischen Bereich am Ende des Zyklus. Für diese Regelung gibt es viele verschiedene Möglichkeiten: die Bandbreite reicht von der Änderung der Kühlmitteldichte während eines Brennstoffzyklus bis hin zur mechanischen Änderung des Wasser-Uran-Verhältnisses. In diesem Beitrag wird die Möglichkeit der Beeinflussung des Spektrums mit Verdrängern aus abgereichertem Uran oder Zirkonium bei einem Uran-MOX-Kern vorgestellt. Die dazu neu entwickelten Brennelemente mit speziellen Führungsrohren für diese Verdränger werden vorgestellt.


2Pavel Teplov (corresponding author), E-mail:

References

1 Millot, J. P.: Framatome's Convertible Spectral Shift Reactor, Nuclear Europe, April 1986Search in Google Scholar

2 Roven, V.; FahimaV.: Combination of two spectral shift control methods for PWR with improved power utilization, Jbid., 67 (1984) 4655Search in Google Scholar

3 Tsibulskiy, V. F.; Chibiniaev, A. V.: CONSUL – nuclear reactor precise complex calculation code, VANT, FYR, Vol.3 (1995), p. 29Search in Google Scholar

4 Chibiniaev, A. V.: Neutron-physical characteristics of VVER type reactors on the basis of the complex approach to modeling physical processes research. Preprint IAE-5930/5, Moscow, 1995Search in Google Scholar

5 Teplov, P. S.; Chibiniaev, A.V.: Development of CONSUL code package on the basis of WIMS-D5, Preprint IAE-6383/5, Moscow, 2005Search in Google Scholar

6 WLUP – WIMS Library Update, IAEA Final Report of a Coordinated Research Project, 2003Search in Google Scholar

7 WIMSD5, NEA Data Bank Documentation, No. 1507/02, 1996Search in Google Scholar

8 Zakharko, U. A.; Proshkin, A. A.; Shestopalov, A. A.: The description of a approach and TEGAS code for probability-statistical calculation of power reactor fuel rod behavior, Preprint IAE-4945/4, Moscow, 1989Search in Google Scholar

Received: 2013-2-12
Published Online: 2013-10-21
Published in Print: 2013-08-28

© 2013, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Editorial
  6. Selected contributions to the XXIInd symposium of the Atomic Energy Research organization
  7. Technical Contributions/Fachbeiträge
  8. Fuel cycles of WWER-440: results of basic design modification
  9. Use of erbium as burnable poison for VVER reactors
  10. The estimation of the control rods absorber burn-up during the VVER-1000 operation
  11. The main characteristic of the evolution project SuperVVER with spectrum shift regulation
  12. Automatic loading pattern optimization tool for Loviisa VVER-440 reactors
  13. Uncertainties of the neutronic calculations at core level determined by the KARATE code system and the KIKO3D code
  14. The reactor dynamics code DYN3D and its trigonal-geometry nodal diffusion model
  15. Comparison of sensitivity and uncertainty in Gd and Er containing fuels for VVER-1000 using TSUNAMI-2D
  16. Contribution of the number of measured data to calculation uncertainty in the worth of VVER control rods
  17. A comparison of the FA's models with the detailed and simplified description in the MCU code calculations
  18. Account for uncertainties of control measurements in the assessment of design margin factors
  19. Results of precision calculations of three-dimensional power density in VVER-1000 core with feedbacks using MCU code
  20. CFD analysis of temperature deviations in Gd assembly heads
  21. Application of statistical uncertainty and sensitivity evaluations to a PWR LBLOCA analysis calculated with the code ATHLET. Part 1: uncertainty analysis
  22. Post test calculations of a severe accident experiment for VVER-440 reactors by the ATHLET code
  23. The impact on the competence on severe accidents following the Fukushima event
Downloaded on 13.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110376/html
Scroll to top button