Home Post test calculations of a severe accident experiment for VVER-440 reactors by the ATHLET code
Article
Licensed
Unlicensed Requires Authentication

Post test calculations of a severe accident experiment for VVER-440 reactors by the ATHLET code

  • H. György and I. Trosztel
Published/Copyright: October 21, 2013
Become an author with De Gruyter Brill

Abstract

Severe accident – if no mitigation action is taken – leads to core melt. An effective severe accident management strategy can be the external reactor pressure vessel cooling for corium localization and stabilization. For some time discussion was going on, whether the in-vessel retention can be applied for the VVER-440 type reactors. It had to be demonstrated that the available space between the reactor vessel and biological protection allows sufficient cooling to keep the melted core in the vessel, without the reactor pressure vessel losing its integrity. In order to demonstrate the feasibility of the concept an experimental facility was realized in Hungary. The facility called Cooling Effectiveness on the Reactor External Surface (CERES) is modeling the vessel external surface and the biological protection of Paks NPP. A model of the CERES facility for the ATHLET TH system code was developed. The results of the ATHLET calculation agree well with the measurements showing that the vessel cooling can be insured for a long time in a VVER-440 reactor.

Kurzfassung

Zur Verhinderung von Kernschmelzen wurde auch bei WWER-440 Reaktoren im Rahmen der Accident Management Strategie das externe Kühlen des Reaktordruckbehälters diskutiert. Damit soll das weitere Ausbreiten des Coriums verhindert werden und eine Stabilisierung des Systems unterstützt werden. Dazu musste gezeigt werden, dass der verfügbare Spalt zwischen Reaktordruckbehälter und biologischem Schild so groß ist, dass darüber eine ausreichende Kühlung möglich ist, die einen Integritätsverlust des Reaktordruckbehälters verhindert und die Schmelze im RDB verbleibt. Dazu wurden Versuche an der Anlage Cooling Effectiveness on the Reactor External Surface (CERES) in Ungarn durchgeführt und mit dem Programm ATHLET nachgerechnet. Die Anlage modelliert die Gegebenheiten des KKW Paks. Sowohl die Experimente als auch die Nachrechnungen zeigen, dass das externe Kühlen auch bei WWER-440 Reaktoren eingesetzt werden kann.


3 MSc, Hunor György (corresponding author), E-mail:

References

1 Kymäläinen, O.; Tuomisto, H.; Theofanous, T. G.: In-vessel retention of corium at the Loviisa plant. Nuclear Engineering and Design169 (1997)10.1016/S0029-5493(96)01280-0Search in Google Scholar

2 Matejovic, P.; Barnak, M.; BachratyM.: In-Vessel Corium Retention for Paks NPP. Analysis of LB and SB LOCA Sequences. Internal Report. IVS, Trnava, June 2009Search in Google Scholar

3 Van Dorsselaere, J. P.; Chatelard, P.; Cranga, M.; Guillard, G.; Trégourès, N.; Bosland, L.; Brillant, G.; Girault, N.; Bentaïb, A.; Reinke, N.; LutherW.: Validation Status of the ASTEC Integral Code for Severe Accident SimulationSearch in Google Scholar

4 Berky, R.; Bosanskym, J.: Computational Analysis of Reactor's Pressure Vessel Dilatation, Internal Report. Report IBOK IBK/2009/7011/006/TES, July 2009Search in Google Scholar

5 The RELAP5-3D Code Development Team, RELAP5-3D Code Manual, Volume I: Code Structure, System Models, and Solution Methods. INEEL-EXT-98-00834, June 2005Search in Google Scholar

6 Szabados, L.; Ézsöl, Gy.; Perneczky, L.; TóthI.: Final Report on the PMK-2 Projects, Volume I, Results of the Experiments Performed in the PMK-2 Facility for VVER Safety Studies. Budapest, 2007, ISBN 9789630584616Search in Google Scholar

7 Szabados, L.; Ézsöl, Gy.; Perneczky, L.; TóthI.; Guba, A.; Takács, A.; Trosztel, I.: Final Report on the PMK-2 Projects, Volume II, Major findings of PMK-2 Test Results and Validation of Thermohydraulic System Codes for VVER Safety Studies. Budapest, 2009 November 15, ISBN 9789630588102Search in Google Scholar

8 Ézsöl, Gy.; Baranyai, G.; Perneczky, L.; Szabados, L.; TóthI.: Modelling of External Cooling for In-Vessel Corium Retention in VVER-440/213 Type Nuclear Power Plants. Proceedings of the 18th International Conference on Nuclear Engineering (ICONE-18), Xi'an, China, 2010 May 17–21, Paper #2941310.1115/ICONE18-29413Search in Google Scholar

9 Lerchl, G.; Austregesilo, H.; Glaeser, H.; Hrubisko, M.; Luther, W.: ATHLET Mod. 2.2 Cycle A Validation. GRS, July 2009Search in Google Scholar

10 Guba, A.; Trosztel, I.: Uncertainty Analysis of a PMK-2 Pressurizer Surge Line Middle Size Break Experiment. Report KFKI AEKI, Budapest, 2000Search in Google Scholar

11 Hämäläinen, A.; Kyrki-Rajamäki, R.; Mittag, S.; Kliem, S.; Weiss, F.-P.; Langenbuch, S.; Danilin, S.; Hadek, J.; Hegyi, G.; Kuchin, A.; Panayotov, D.: Validation of coupled neutron kinetic/thermal-hydraulic codes Part 2: Analysis of a VVER-440 transient (Loviisa-1). Annals of Nuclear Energy29 (2002) 25526910.1016/S0306-4549(01)00039-1Search in Google Scholar

12 Lerchl, G.; Austregesilo, H.: ATHLET Mod. 2.2 Cycle A User's manual. GRS, July 2009Search in Google Scholar

Received: 2013-2-13
Published Online: 2013-10-21
Published in Print: 2013-08-28

© 2013, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Editorial
  6. Selected contributions to the XXIInd symposium of the Atomic Energy Research organization
  7. Technical Contributions/Fachbeiträge
  8. Fuel cycles of WWER-440: results of basic design modification
  9. Use of erbium as burnable poison for VVER reactors
  10. The estimation of the control rods absorber burn-up during the VVER-1000 operation
  11. The main characteristic of the evolution project SuperVVER with spectrum shift regulation
  12. Automatic loading pattern optimization tool for Loviisa VVER-440 reactors
  13. Uncertainties of the neutronic calculations at core level determined by the KARATE code system and the KIKO3D code
  14. The reactor dynamics code DYN3D and its trigonal-geometry nodal diffusion model
  15. Comparison of sensitivity and uncertainty in Gd and Er containing fuels for VVER-1000 using TSUNAMI-2D
  16. Contribution of the number of measured data to calculation uncertainty in the worth of VVER control rods
  17. A comparison of the FA's models with the detailed and simplified description in the MCU code calculations
  18. Account for uncertainties of control measurements in the assessment of design margin factors
  19. Results of precision calculations of three-dimensional power density in VVER-1000 core with feedbacks using MCU code
  20. CFD analysis of temperature deviations in Gd assembly heads
  21. Application of statistical uncertainty and sensitivity evaluations to a PWR LBLOCA analysis calculated with the code ATHLET. Part 1: uncertainty analysis
  22. Post test calculations of a severe accident experiment for VVER-440 reactors by the ATHLET code
  23. The impact on the competence on severe accidents following the Fukushima event
Downloaded on 28.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110380/html?lang=en
Scroll to top button