Startseite Technik TN approximation for the critical size of one-speed neutrons in a slab with anisotropic scattering
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

TN approximation for the critical size of one-speed neutrons in a slab with anisotropic scattering

  • H. Öztürk
Veröffentlicht/Copyright: 9. September 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The critical thickness for one-speed neutrons in a uniform finite slab with anisotropic scattering is investigated using Marshak boundary condition. The angular part of the neutron angular flux is expanded in terms of the Chebyshev polynomials of first kind. Numerical results for the critical thickness of the slab are calculated for various values of the collision and the anisotropy parameters and they are given in the tables together with the ones obtained by Legendre polynomials approximation and the ones available in literature for comparison. The results obtained by the present method are in good accordance with the literature values.

Kurzfassung

Die Berechnung der kritischen Dicke der Neutronen einer Geschwindigkeit innerhalb einer gleichmäßigen endlichen Platte unter Berücksichtigung der anisotropen Streuung wird in diesem Beitrag vorgestellt. Dazu wird der winkelabhängige Teil des Neutronenstromes durch Chebyshev Polynome erster Ordner angenähert. Die Lösung erfolgt unter Berücksichtigung der Marshak Randbedingung. Die Ergebnisse werden für verschiedene Kollisions- und Richtungsabhängigkeitsparameter berechnet und tabellarisch angegeben. Als Vergleichswerte werden Ergebnisse gegenübergestellt, die durch Anwendung der Näherungsmethode mit Legendre Polynomen erzielt wurden und weiteren in der Literatur verfügbaren Daten. Der Vergleich zeigt eine gute Übereinstimmung zwischen den verschiedenen Methoden.

References

1 Conkie, W. R.: Polynomial approximations in neutron transport theory. Nucl. Sci. Eng.6 (1959) 260Suche in Google Scholar

2 Yabushita, S.: Tschebyscheff polynomials approximation method of the neutron transport equation. J. Math. Phys.2 (1961) 543Suche in Google Scholar

3 Aspelund, O.: On a new method for solving the (Boltzmann) equation in neutron transport theory. PICG16 (1958) 530Suche in Google Scholar

4 Anli, F.; Yasa, F.; Güngör, S.; Öztürk, H.: TN approximation to neutron transport equation and application to critical slab problem. J. Quant. Spectrosc. Radiat. Transfer101 (2006) 129Suche in Google Scholar

5 Anli, F.; Güngör, S.; Yasa, F.; Öztürk, H.: TN approximation to reflected slab and computation of the critical half thickness. J. Quant. Spectrosc. Radiat. Transfer101 (2006) 135Suche in Google Scholar

6 Öztürk, H.; Anli, F.; Güngör, S.: TN method for the critical thickness of one-speed neutrons in a slab with forward and backward scattering. J. Quant. Spectros. Radiat. Trans.105 (2007) 211Suche in Google Scholar

7 Öztürk, H.: Study of the effect of anisotropic scattering on the critical slab problem in neutron transport theory using Chebyshev polynomials. Kerntechnik73/5-6 (2008) 284Suche in Google Scholar

8 Yılmazer, A.,: Solution of one-speed neutron transport equation for strongly anisotropic scattering by TN approximation: Slab criticality problem. Ann. Nucl. Energy34 (2007) 743Suche in Google Scholar

9 Öztürk, H.: The criticality calculations for one-speed neutrons in a reflected slab with anisotropic scattering using the modified UN method. Kerntechnik77 (2012) 453Suche in Google Scholar

10 Bülbül, A.; Demir, H.; Anlı, F.; Öztürk, H.: Application of the TN method to critical slab problem for one-speed neutrons with forward and backward scattering. Nucl. Eng. Design241 (2011) 1454Suche in Google Scholar

11 Bell, G. I.; Glasstone, S.: Nuclear reactor theory. New York, VNR Company, 1972Suche in Google Scholar

12 Davison, B.: Neutron transport theory. London, Oxford University Press, 195810.1063/1.3062414Suche in Google Scholar

13 Sahni, D. C.; Sjöstrand, N. G.; Garis, N. S.: Criticality and time eigenvalues for one-speed neutrons in a slab with forward and backward scattering. J. Phys. D: Appl. Phys.25 (1992) 1381Suche in Google Scholar

14 Arfken, G.: Mathematical methods for physicists. London, Academic Press, Inc.: 1985Suche in Google Scholar

15 Dahl, E. B.; Sjöstrand, N.G.: Eigenvalue spectrum of multiplying slabs and spheres for monoenergetic neutrons with anisotropic scattering. Nucl. Sci. Eng.69 (1979) 114Suche in Google Scholar

16 Lee, C. E.; Dias, M. P.: Analytical solutions to the moment transport equations-I; one-group one-region slab and sphere criticality. Ann. Nucl. Energy11 (1984) 515Suche in Google Scholar

17 Aranson, R.: Critical problems for bare and reflected slabs and spheres. Nucl. Sci. Eng.86 (1984) 150Suche in Google Scholar

Received: 2013-1-24
Published Online: 2013-09-09
Published in Print: 2013-06-28

© 2013, Carl Hanser Verlag, München

Heruntergeladen am 11.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110350/html
Button zum nach oben scrollen