Home Technology Investigation of neutronic effects in structural material of a hybrid reactor by using the MCNPX Monte Carlo transport code
Article
Licensed
Unlicensed Requires Authentication

Investigation of neutronic effects in structural material of a hybrid reactor by using the MCNPX Monte Carlo transport code

  • M. Günay
Published/Copyright: September 9, 2013
Become an author with De Gruyter Brill

Abstract

In this study, 98–90% Li2BeF4-2–10% ThF4, 98–90% Li2BeF4-2–10% UF4, 98–90% Li2BeF4-2–10% UO2 and 100% Li2BeF4 molten salt-heavy metal was used as fluid. The fluids were used in the liquid first wall, liquid second wall and shield zones of the designed hybrid reactor system. A steel wall of 4 cm thickness is used as structural material. Proton, deuterium, tritium, He-3 and He-4 gas production rates are the parameters of radiation damage. In the study, the effect of liquid second wall thicknesses (20 cm, 30 cm, 40 cm, 50 cm) on the neutron flux distribution and the parameters of radiation damage according to neutron energy spectrum in the structural material were investigated for the selected fluids. A three-dimensional analysis was done by using the most recent version of the MCNPX-2.7.0 Monte Carlo code and the nuclear data library ENDF/B-VII.

Kurzfassung

In dieser Untersuchung wurde 98–90% Li2BeF4-2–10% ThF4, 98–90% Li2BeF4-2–10% UF4, 98–90% Li2BeF4-2–10% UO2 und 100% Li2BeF4 Flüssigsalz-Schwermetall verwendet. Die Flüssigkeiten wurden bei der ersten und zweiten flüssigen Wand und bei der Abschirmzone des konzipierten Hybrid-Reaktors verwendet. Als Strukturmaterial wurde eine 4 cm dicke Stahlwand verwendet. Parameter für Strahlungsschäden sind die Produktionsraten von Protonen, Deuterium, Tritium, He-3 und He-4. In der Studie wurde die Wirkung der Wanddicke (20 cm, 30 cm, 40 cm, 50 cm) der zweiten flüssigen Wand auf die Verteilung des Neutronenflusses und die Parameter der Strahlungsschäden entsprechend dem Neutronenenergiespektrum für die gewählten Flüssigkeiten untersucht. Für die dreidimensionale Analyse wurde die neueste Version des Monte-Carlo-Codes MCNPX-2.7.0 und die Kerndatenbibliothek ENDF/B-VII verwendet.

References

1 Şahin, S.; Übeyli, M.: Radiation Damage Studies on The First Wall of a HYLIFE-II Type Fusion Breeder. Energy Conversion and Management46 (2005) 3185Search in Google Scholar

2 Şarer, B.; Günay, M.; et al.: Three-Dimensional Neutronic Calculations For The Fusion Breeder Apex Reactor. Fusion Science and Technology52 (2007) 107Search in Google Scholar

3 Günay, M.; et al.: Three-Dimensional Neutronic Calculations for a Fusion Breeder Apex Reactor Using Some Libraries. Annals of Nuclear Energy38 (2011) 2757Search in Google Scholar

4 Şahin, H. M.: Monte Carlo Calculation of Radiation Damage in First Wall of An Experimental Hybrid Reactor. Annals of Nuclear Energy34 (2007) 861Search in Google Scholar

5 Şahin, S.; et al.: Minor actinide burning in a CANDU thorium reactor. Kerntechnik71 (2006) 247Search in Google Scholar

6 Sawan, M. E.; Abdou, M. A.: Physics and Technology Conditions for Attaining Tritium Self-Sufficiency for the DT Fuel Cycle. Fusion Engineering and Design81 (2006) 1131Search in Google Scholar

7 Jung, J.; Abdou, M.: Assessments of Tritium Breeding Requirements and Breeding Potential for The Starfire/Demo Design. Nuclear Technology/Fusion4 (1983) 361Search in Google Scholar

8 Abdou, M. A.; et al.: Overview of Fusion Blanket R&D in The US Over The Last Decade. Nuclear Engineering and Technology37 (2005) 401Search in Google Scholar

9 Abdou, M. A.; et al.: On The Exploration of Innovative Concepts for Fusion Chamber Technology. Fusion Engineering and Design54 (2001) 181Search in Google Scholar

10 Christofilos, N. C.: Design for A High Power-Density Astron Reactor. Journal of Fusion Energy8 (1989) 97Search in Google Scholar

11 Moir, R. W.: Liquid First Walls For Magnetic Fusion Energy Configurations. Nuclear Fusion37 (1997) 557Search in Google Scholar

12 Abdou, M. A.: Preface. Fusion Engineering and Design72 (2004) 1Search in Google Scholar

13 Youssef, M. Z.; Sawan, M.E.; Sze, D.K.: The Breeding Potential of “Flinabe” and Comparison to “Flibe” in “CLiFF” High Power Density Concept. Fusion Engineering and Design61-62 (2002) 497Search in Google Scholar

14 Youssef, M. Z., Abdou, M. A.: Heat Deposition, Damage and Tritium Breeding Characteristics in Thick Liquid Wall Blanket Concepts. Fusion Engineering and Design49-50 (2000) 719Search in Google Scholar

15 Ying, A.; et al.: Chapter 5: Thick Liquid Blanket Concept, APEX Interim Report, 1999Search in Google Scholar

16 Piera, M.; et al.: Hybrid reactors: Nuclear breeding or energy production? Energy Conversion and Management51 (2010) 1758Search in Google Scholar

17 Günay, M.: Investigation of radiation damage in structural material of APEX reactor by using Monte Carlo method. Annals of Nuclear Energy53 (2013) 59Search in Google Scholar

18 Şarer, B.; et al.: Calculations of Neutron-Induced Production Cross-Sections of 180,182,183,184,186W up to 20 MeV. Annals of Nuclear Energy36 (2009) 417Search in Google Scholar

19 Chadwick, M. B.; et al.: ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology. Nuclear Data Sheets107 (2006) 2931Search in Google Scholar

20 Pelowitz, D.B.: MCNPX User’s Manual, Version 2.7.0, LA-CP-11-00438, 2011Search in Google Scholar

21 Briesmeister, J. F.: Los Alamos National Laboratory Report, LA-13709-M, 2000Search in Google Scholar

22 Prael, R. E.; Lichtenstein, H.: Los Alamos National Laboratory Report, LA-UR-89-3014, 1989Search in Google Scholar

23 Dresner, L.: Oak Ridge National Laboratory Report ORNL/TM-196, 1962Search in Google Scholar

24 Şarer, B.; et al.: Comparisons of the calculations using different codes implemented in MCNPX Monte Carlo transport code for accelerator driven system target. Fusion Science and Technology61 (2012) 302Search in Google Scholar

25 Ünalan, S.: Rejuvenation of The LWR Spent Fuel in (D-T) Driven Hybrid Reactors. Fusion Engineering and Design38 (1998) 393Search in Google Scholar

26 Duderstadt, J. J.; Moses, G. A.: Inertial confinement fusion. New York: John Wiley & Sons, 1982Search in Google Scholar

27 Blink, J. A.; et al.: High-Yield Lithium-Injection Fusion Energy (HYLIFE) Reactor. Lawrence Livermore National Laboratory, UCRL-53559, 198510.2172/6124368Search in Google Scholar

28 Perlado, M.; et al.: Radiation Damage in Structural Materials, in: Energy from Inertial Fusion. International Atomic Energy Agency, STI/PUB/944, p. 272, 1995Search in Google Scholar

29 Şahin, S.; et al.: Effects of spectral shifting in an inertial confinement fusion system. Kerntechnik70 (2005) 233Search in Google Scholar

30 Moir, R. W.; et al.: HYLIFE-II, A Molten Salt Inertial Fusion Energy Power Plant Design-Final Report. Fusion Technology25 (1994) 5Search in Google Scholar

Received: 2013-1-6
Published Online: 2013-09-09
Published in Print: 2013-06-28

© 2013, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110338/html
Scroll to top button