Home Technology Effect of Cu2+/Al3+ mole ratio on structure of Cu – Al bimetallic nanoparticles prepared by radiation induced method
Article
Licensed
Unlicensed Requires Authentication

Effect of Cu2+/Al3+ mole ratio on structure of Cu – Al bimetallic nanoparticles prepared by radiation induced method

  • A. Abedini , F. Larki , E. Saion and M. Noroozi
Published/Copyright: September 9, 2013
Become an author with De Gruyter Brill

Abstract

Cu–Al bimetallic nanoparticles were synthesized by gamma irradiation technique in aqueous solutions containing metal chlorides as precursors, polyvinyl alcohol (PVA) as a capping agent, isopropanol as a radical scavenger, and distilled water as a solvent. The Cu–Al bimetallic nanoparticles were characterized by transmission electron microscopy (TEM), UV-visible absorption spectrometry, powder X-ray diffractometer (XRD), and Energy-dispersive X-ray spectroscopy (EDX). The TEM, XRD, EDX, and absorption analyses confirmed the formation of core-shell structure of Cu–Al bimetallic nanoparticles at lower Cu2+/Al3+ mole ratio, and the formation of Cu–Al alloy nanoparticles at higher Cu2+/Al3+ mole ratio. The TEM analysis for particle size and size distribution revealed that the average particle size of Cu–Al bimetallic nanoparticles decreased with the increase of absorbed dose. It may be explained due to the competition between nucleation and aggregation processes in the formation of metallic nanoparticles under irradiation.

Kurzfassung

Cu–Al-bimetallische Nanopartikel wurden synthetisiert mit Hilfe eines Gammabestrahlungsverfahrens in wässriger Lösung, die Metallchlorid als Precursor enthielt, Polyvinylalkohol (PVA) als sogenanntes Capping Agent, Isopropanol als Radikalfänger, und destilliertes Wasser als Lösungsmittel. Die Cu–Al bimetallischen Nanopartikel wurden charakterisiert mit Hilfe der Transmissionselektronenmikroskopie (TEM), der Absorptionsspektrometrie im sichtbaren UV-Bereich, mit dem Pulver-Röntgendiffraktometer (XRD), und der Energy-dispersiven Röntgenspektroskopie (EDX). TEM, XRD, EDX, und die Absorptionsanalyse bestätigen die Bildung einer Kern-Schale-Struktur von Cu–Al-bimetallischen Nanopartikeln bei niedrigeren Cu2+/Al3+ Molverhältnissen, und die Bildung von Cu–Al-Legierung Nanopartikeln bei höheren Cu2+/Al3+ Molverhältnissen. Die TEM Analyse für Partikelgröße und -größenverteilung zeigte, dass die durchschnittliche Partikelgröße von Cu–Al-bimetallischen Nanopartikeln sinkt mit steigender Energiedosis. Dies könnte erklärt werden mit der Konkurrenz zwischen Kernbildung und Verdichtung bei der Bildung von metallischen Nanopartikeln unter Bestrahlung.


2 Farhad Larki, E-mail:

References

1 Ryu, H.; Bartwal, K.: An efficient co-doping of Eu and Er in CaAl2O4 aluminate phosphor. Physica B: Condensed Matter403 (2008) 31953198Search in Google Scholar

2 Lv, W.; et al.: Synthesis, characterization and photocatalytic properties of spinel CuAl2O4 nanoparticles by a sonochemical method. J. Alloy Compd.479 (2009) 480483Search in Google Scholar

3 Denisova, J.; et al.: An impedance study of complex Al/Cu-Al2O3 electrode. 2011: IOP Publishing.10.1088/1757-899X/23/1/012040Search in Google Scholar

4 Yanyan, J.; et al.: CuAl2O4 powder synthesis by sol-gel method and its photodegradation property under visible light irradiation. J. Sol-Gel Sci. Technol.42 (2007) 4145Search in Google Scholar

5 Salavati-Niasari, M.; Davar, F.; Farhadi, M.: Synthesis and characterization of spinel-type CuAl2O4 nanocrystalline by modified sol-gel method. J. Sol-Gel Sci. Technol.51 (2009) 4852Search in Google Scholar

6 Abedini, A.; Saion, E.; Larki, F.: Radiation-induced reduction of mixed copper and aluminum ionic aqueous solution. J. Radioanal. Nucl. Chem.292 (2012) 983987Search in Google Scholar

7 Zhou, R.; et al.: Influences of surfactants on the preparation of copper nanoparticles by electron beam irradiation. Nucl. Instr. and Meth. in Phys. Res. B266 (2008) 599603Search in Google Scholar

8 Akhavan, A.; et al.: Radiation synthesis and characterization of protein stabilized gold nanoparticles. Chem. Eng. J.159 (2010) 230235Search in Google Scholar

9 Abedini, A.; et al.: Radiation formation of Al-Ni bimetallic nanoparticles in aqueous system. J. Radioanal. Nucl. Chem. (2012) 16Search in Google Scholar

10 Abedini, A.; et al.: Influence of dose and ion concentration on formation of inary Al-Ni alloy nanoclusters. Rad. Phys. Chem.81 (2012) 16531658Search in Google Scholar

11 Treguer, M.; et al.: Dose rate effects on radiolytic synthesis of gold-silver bimetallic clusters in solution. J. Phys. Chem. B102 (1998) 43104321Search in Google Scholar

12 Belloni, J.; et al.: Radiation-induced synthesis of mono-and multi-metallic clusters and nanocolloids. New J. Chem.22 (1998) 12391255Search in Google Scholar

13 Zhiqiang, L.; Xiaobin, L.; Zhihong, P.: The Mechanism of Agglomeration and Control in the Process of Ultrafine Powder Prepared by WetChemical Method. CHEMISTRY7 (1999)Search in Google Scholar

14 Mallin, M.P.; Murphy, C.J.: Solution-phase synthesis of sub-10 nm Au-Ag alloy nanoparticles. Nano Lett.2 (2002) 12351237Search in Google Scholar

15 Khatouri, J.; et al.: Radiation-induced copper aggregates and oligomers. Chem. Phys. Lett.191 (1992) 351356Search in Google Scholar

16 Song, Y.; et al.: Controlled growth of Cu nanoparticles by a tubular microfluidic reactor. Chem. Eng. J.168 (2011) 477484Search in Google Scholar

17 Chen, D. H.; Wu, S. H.: Synthesis of nickel nanoparticles in water-in-oil microemulsions. Chem. Mater12 (2000) 13541360Search in Google Scholar

18 Stratakis, E.; et al.: Generation of Al nanoparticles via ablation of bulk Al in liquids with short laser pulses. Optic. Exp.15 (2009) 1265012659Search in Google Scholar

19 Saion, E.; Gharibshahi, E.: On the theory of metal nanoparticles based on quantum mechanical calculation. J. Fundam. Sci.7 (2011) 611Search in Google Scholar

Received: 2012-8-8
Published Online: 2013-09-09
Published in Print: 2013-06-28

© 2013, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110290/html
Scroll to top button