Home Technology Burnup calculations using serpent code in accelerator driven thorium reactors
Article
Licensed
Unlicensed Requires Authentication

Burnup calculations using serpent code in accelerator driven thorium reactors

  • M. E. Korkmaz , M. Yiğit and O. Ağar
Published/Copyright: September 9, 2013
Become an author with De Gruyter Brill

Abstract

In this study, burnup calculations have been performed for a sodium cooled Accelerator Driven Thorium Reactor (ADTR) using the Serpent 1.1.16 Monte Carlo code. The ADTR has been designed for burning minor actinides, mixed 232Th and mixed 233U fuels. A solid Pb-Bi spallation target in the center of the core is used and sodium as coolant. The system is designed for a heating power of 2000 MW and for an operation time of 600 days. For burnup calculations the Advanced Matrix Exponential Method CRAM (Chebyshev Rational Approximation Method) and different nuclear data libraries (ENDF7, JEF2.2, JEFF3.1.1) were used. The effective multiplication factor change from 0.93 to 0.97 for different nuclear data libraries during the reactor operation period.

Kurzfassung

In dieser Arbeit wurden Abbrandrechnungen für einen Natrium-gekühlten beschleunigergetriebenen Thorium-Reaktor (ADTR) mit Hilfe des Monte-Carlo Codes Serpent 1.1.16 durchgeführt. Der ADTR wurde ausgelegt für minore Aktinide, gemischte 232Th und 233U Brennstoffe. Im Zentrum des Kerns wurde ein Pb-Bi Target und als Kühlmittel Natrium verwendet. Das System wurde ausgelegt für eine Heizleistung von 2000 MW und eine Betriebszeit von 600 Tagen. Für die Abbrandberechnungen wurden die Advanced Matrix Exponential Method CRAM (Chebyshev Rational Approximation Method) und verschiedene Kerndatenbibliotheken (ENDF7, JEF2.2, JEFF3.1.1) verwendet. Der effektive Multiplikationsfaktor kann sich während der Betriebszeit von 0.93 auf 0.97 erhöhen je nach Kerndatenbibliothek.

References

1 Rubbia, C.: A realistic plutonium elimination scheme with fast energy amplifiers and thorium-plutonium fuel. Report, CERN/AT/95-53(ET), Cern (Switzerland) (1995)Search in Google Scholar

2 Lodhi, M. A. K.; Shubov, M.: Accelerator breeder reactors. Annals of Nuclear Energy36 (2009) 83784310.1016/j.anucene.2009.01.005Search in Google Scholar

3 Bowman, C. D.; Arthur, E. D.; Lisowski, P. W.; Lawrence, G. P.; Jensen, R. J.; Anderson, J. L.; Blind, B.; Cappiello, M.; Davidson, J. W.; England, T. R.; Engel, L. N.; Haight, R. C.; Hughes, H. G.; Ireland, J. R.; Krakowski, R. A.; Labauve, R. J.; Letellier, B. C.; Perry, R. T.; Russell, G. J.; Staudhammer, K. P.; Versamis, G.; Wilson, W. B.: Nuclear energy generation and waste transmutation using an accelerator-driven intense thermal neutron source. Nuclear Instruments and Methods in Physics Research Section A320 (1992) 336367Search in Google Scholar

4 Bowman, C. D.: Accelerator Driven Systems in Nuclear Energy: Role and Technical Approach. In Proc. of Topical Meeting on Nuclear Applications of Accelerator Technology, New Mexico November 16-20 (1997)Search in Google Scholar

5 Kikuchi, K.; Sasa, T.; Ishikura, S.; Mukugi, K.; Kai, T.; Ouchi, N.; Ioka, I.: Current status of JAERI spallation target material program. Journal of Nuclear Materials296 (2001) 3442Search in Google Scholar

6 Mukaiyama, T.: Omega Programme in Japan and ADS development at JAERI. Proc. 3rd Int. Conf. on Accelerator Driven Transmutation Technologies and Applications, Prague June 7-11 (1999)Search in Google Scholar

7 International Atomic Energy Agency: Thorium fuel cycle-potential benefits and challenges. IAEA-TECDOC-1450, (2005)Search in Google Scholar

8 Gokhale, P. A.; Deokattey, S.; Kumar, V.: Accelerator driven systems (ADS) for energy production and waste transmutation: International trends in R&D. Progress in Nuclear Energy48 (2006) 91102Search in Google Scholar

9 Hashemi-Nezhad, S. R.; Brandt, R.; Westmeier, W.; Bamblevski, V. P.; Krivopustov, M. I.; Kulakov, B. A.; Sosnin, A. N.; Wan, J.-S.; Odoj, R.: Monte Carlo analysis of accelerator-driven systems: Studies on spallation neutron yield and energy gain. Kerntechnik66 (2001) 47Search in Google Scholar

10 Wider, H. U.; Karlsson, J.; Jones, A. V.: Passive Safety Approaches in Lead/Bismuth-cooled Accelerator Driven Systems. JK’2000 Jahrestagung Kerntechnik, Bonn, Germany (2000)Search in Google Scholar

11 Leray, S.; Borne, F.; Crespin, S.; Fréhaut, J.; Ledoux, X.; Martinez, E.; Patin, Y.; Petibon, E.; Pras, P.; Boudard, A.; Legrain, R.; Terrien, Y.; Brochard, F.; Drake, D.; Duchazeaubeneix, J. C.; Durand, J. M.; Meigo, S. I.; Milleret, G.; Whittal, D. M.; Wlazlo, W.; Durand, D.; Le Brun, C.; Lecolley, F. R.; Lecolley, J. F.; Lefebvres, F.; Louvel, M.; Varignon, C.; Hanappe, F.; Ménard, S.; Stuttge, L.; Thun, J.: Spallation neutron production by 0.8, 1.2 and 1.6 GeV protons on various targets. Physical Review C65 (2002) 044621Search in Google Scholar

12 Konobeev, A. Yu.; et al.: Study of Accelerator-Driven Reactor System. Kerntechnik64 (1999) 127Search in Google Scholar

13 Yasin, Z.; ShahzadM.I.: From conventional nuclear power reactors to accelerator-driven systems. Annals of Nuclear Energy37 (2010) 8792Search in Google Scholar

14 Landau, D. P.; BinderK.: A Guide to Monte Carlo Simulations in Statistical Physics. Cambridge University press, Cambridge (2000)Search in Google Scholar

15 Leppänen, J.: On the use of the continuous-energy Monte Carlo method for lattice physics applications. In Proc. INAC 2009, Rio de Janeiro (Brazil) (2009)Search in Google Scholar

16 Leppänen, J.: VVER-440 Local power peaking experiment benchmark. Research report VTT-R-02688-07, VTT Technical Research Centre of Finland, Finland (2007)Search in Google Scholar

17 Leppänen, J.: PSG2/Serpent – a continuous-energy Monte Carlo reactor physics burnup calculation code. User’s Manual (2011)Search in Google Scholar

18 Cetnar, J.: General solution of Bateman equations for nuclear transmutations. Annals of Nuclear Energy33 (2006) 640645Search in Google Scholar

19 Leppänen, J.; Pusa, M.: Burnup calculation capability in the PSG2/SERPENT Monte Carlo reactor physics code. International Conference on Mathematics, Computational Methods & Reactor Physics (M&C2009) Saratoga Springs, New York (2009)Search in Google Scholar

20 Pusa, M.; Leppänen, J.: Computing the matrix exponential in burnup calculations. Nuclear Science and Engineering164 (2010) 140150Search in Google Scholar

21 Isotalo, A. E.; Aarnio, P. A.: Comparison of depletion algorithms for large systems of nuclides. Annals of Nuclear Energy38 (2011) 261268Search in Google Scholar

Received: 2012-10-31
Published Online: 2013-09-09
Published in Print: 2013-06-28

© 2013, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110358/html
Scroll to top button