Home Technology Computational modeling of monoenergetic neutral particle inverse transport problems in slab geometry
Article
Licensed
Unlicensed Requires Authentication

Computational modeling of monoenergetic neutral particle inverse transport problems in slab geometry

  • R. R. Gomes and R. C. Barros
Published/Copyright: September 9, 2013
Become an author with De Gruyter Brill

Abstract

An analytical numerical method applied to three different types of monoenergetic neutral particle inverse transport problems in the discrete ordinates (SN) formulation is presented: (a) boundary condition estimation; (b) interior source estimation; and (c) effective slab length estimation. These three types of inverse problems governed by the linear integrodifferential transport equation in SN formulation are related respectively to medical physics; nuclear waste storage; and non-destructive testing in industry. Numerical results and a brief discussion are given to conclude the paper.

Kurzfassung

Eine analytische numerische Methode zur Lösung inverser Transportprobleme für drei verschiedene Arten neutraler monoenergetischer Teilchen wird in Form diskreter Ordinaten (SN) vorgestellt: (a) Näherungswerte mit Randbedingungen; (b) Näherungswerte innenliegender Quellen; und (c) Näherungswerte für effektive Stablängen. Diese drei Arten inverser Probleme, die durch die lineare integrodifferentiale Transportgleichung in SN Form bestimmt werden, gilt es zu lösen in den Bereichen Medizinphysik (a); Lagerung radioaktiver Abfälle (b); und zerstörungsfreie Materialprüfung in der Industrie (c). Numerische Ergebnisse und eine kurze Diskussion beschliessen den Beitrag.

References

1 Lewis, E. E.; Miller, W. F.: Computational Methods of Neutron Transport. American Nuclear Society, Illinois, 1993Search in Google Scholar

2 Barros, R. C.; Larsen, E. W.: A Numerical Method for One-Group Slab-Geometry Discrete Ordinates Problems with No Spatial Truncation Error. Nuclear Science and Engineering104 (1990) 199208Search in Google Scholar

3 Burden, R. L.; Faires, J. D.: Numerical Analysis. 8. ed, New York, Dover, 1993Search in Google Scholar

4 Duderstadt, J. J.; HamiltonL.J.: Nuclear Reactor Analysis. New York: John Wiley & Son., 1976Search in Google Scholar

5 McCormick, N. J.: Inverse radiative transfer problems: a review. Nuclear Science and Engineering112 (1992) 185Search in Google Scholar

Received: 2013-2-16
Published Online: 2013-09-09
Published in Print: 2013-06-28

© 2013, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110347/html
Scroll to top button