Nuclear aspects and cyclotron production of the positron emitter 55Co
-
M. Talebi
, T. Kakavand and M. Mirzaii
Abstract
The radionuclide 55Co (T1/2 = 17.5 h, Eβ+ = 1.5 MeV, 76% β+ decay) is an important β+ emitting radioisotope. For production of 55Co via natFe(p, xn) 55Co reaction, an iron layer was deposited on a copper substrate by means of electro-deposition method which could be irradiated by 29.5 MeV protons at 100 μA. No-carrier-added (n.c.a.) 55Co was separated from the iron target via an anion exchange column (Dowex 1 · 8). The achieved production yield was 31.25 MBq/μAh. Also, excitation functions for the 55Co radionuclide via natFe(p, xn)55Co, 56Fe(p, 2n)55Co and 54Fe(d, n)55Co reactions were calculated by TALYS-1.4 code and TENDL-2011 database and compared with previous published data.
Kurzfassung
Das Radionuklid 55Co (T1/2 = 17.5 h, Eβ+ = 1.5 MeV, 76% β+ Zerfall) ist ein wichtiges β+ emittierendes Radioisotop. Zur Erzeugung von 55Co durch die Reaktion natFe(p, xn) 55Co, wurde eine Eisenschicht mit Hilfe der Elektrodeposition auf einem Kupfersubstrat abgeschieden, das mit 29.5 MeV Protonen bei 100 μA bestrahlt wurde. Trägerarmes 55Co wurde von dem Eisentarget separiert durch eine Anionenaustauschersäule (Dowex 1 · 8). Die erreichte Produktionsausbeute lag bei 31.25 MBq/μAh. Die Anregungsfunktionen für 55Co via natFe(p, xn)55Co, 56Fe(p, 2n)55Co und 54Fe(d, n)55Co-Reaktionen wurden mit Hilfe des TALYS-1.4 Codes und der TENDL-2011 Databasis berechnet und mit bereits veröffentlichten Daten verglichen.
References
1 Zaman, M. R.; Spellerberg, S.; Qaim, S. M.: Production of 55Co via the 54Fe(d, n)-process and excitation functions of 54Fe(d, t)53Fe and 54Fe(d, α)52 mMn reactions from threshold up to 13.8 MeV. Radiochim. Acta91 (2003) 105Search in Google Scholar
2 Lagunas-Solar, M. C.; Jungerman, J. A.: Cyclotron production of carrier-free cobalt-55, a new positron-emitting label for bleomycin. Int. J. Appl. Radiat. Isot.30 (1979) 25Search in Google Scholar
3 Jalilian, A. R.; Yari-Kamrani, Y.; Rowshanfarzad, P.; Sabet, M.: Preparation and preliminary evaluation of [55Co](Π) vancomycin. Nucl. Sci. Tech.19 (2008) 347Search in Google Scholar
4 Qaim, S. M.: Development of novel positron emitters for medical applications: nuclear and radiochemical aspects. Radiochim. Acta99 (2011) 1Search in Google Scholar
5 Wenrong, Z.; Hanlin, L.; Weixiang, Y.: Measurement of cross sections by bombarding Fe with protons up to 19 MeV. Chin. J. Nucl. Phys. (Beijing)15 (1993) 337Search in Google Scholar
6 Jenkins, I. L.; Wain, A. G.: Excitation functions for the bombardment of Fe-56 with protons. J Inorg Nucl Chem32 (1970) 1419Search in Google Scholar
7 Levkovskij, V. N.: Activation cross section nuclides of average masses (A = 40-100) by protons and alpha-particles with average energies (E = 10–50 MeV). Levkovskij Acta Cs By protons and Alphas, Moscow (1991)Search in Google Scholar
8 Coetzee, P. P.; Peisach, M.: Activation cross sections for deuteron- induced reactions on some elements of the first transition series, up to 5.5 MeV. Radiochim. Acta17 (1972) 1Search in Google Scholar
9 Zhenlan, T.; Fuying, Zhu; Huiyuan, Qiu; Gongoing, W.: Excitation function of deuteron induced reactions on natural iron. Atom. energy sci. techn.18 (1984) 506Search in Google Scholar
10 Al-Abyad, M.; Comsan, M. N. H.; Qaim, S. M.: Excitation functions of proton-induced reactions on natFe and enriched 57Fe with particular reference to production of 57Co. Appl. Radiat. Isot.67 (2009) 122Search in Google Scholar
11 Michel, R.; Brinhmann, G.; Weiget, H.; Herr, W.: Measurement and hybrid-model analysis of proton- induced reactions with V, Fe and Co. Nucl. Phys. A322 (1979) 40Search in Google Scholar
12 Michel, R.; Bodemenn, R.; Busemann, H.; Daunke, R.; Gloris, M.; Lange, H. J.; Klug, B.; et al.: Cross sections for the production of residual nuclides by low-and medium energy protons from the target elements C, N, O, Mg, Al, Si, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Sr, Y, Zr, Nb, Ba and Au. Nucl. Instrum. and Methods in Phys. B129 (1997) 153Search in Google Scholar
13 Brodzinski, R. L.; Rancitelli, L. A.; Cooper, J. A.: High-energy proton spallation of iron. Phys Rev C Nucl Phys4 (1971) 1257Search in Google Scholar
14 Daum, E.: Investigation of light ion induced activation cross sections in iron proton induced activation cross sections. Fed Rep Germ Report to the INDC No043 (1997) 4Search in Google Scholar
15 Barrandon, J. N.; Debrun, J. L.; Kohn, A.; Spear, R. H.: A Study of the main radioisotopes obtained by irradiation of Ti, V, Cr, Fe, Ni, Cu and Zn with protons from 0 to 20 MeV. Nucl. Instrum. and Methods Phys. Res.127 (1975) 269Search in Google Scholar
16 Sharma, H.; Zweit, J.; Smith, A. M.; Downey, S.: Production of cobalt-55, a short-lived, positron emitting radiolabel for bleomycin. Int. J. Radiat. Appl. Instrum. A37 (1986) 105Search in Google Scholar
17 EXFOR/CSISRS: Experimental Nuclear Reaction Data http://wwwnds.iaea.org/exfor (2012)Search in Google Scholar
18 Koning, A. J.; Hilaire, S.; Duijvestijn, M.: TALYS-1.4, a Nuclear Reaction Program, NRG-1755 ZG Petten, The Netherlands, http://www.talys.eu/(2012)Search in Google Scholar
19 Koning, A. J.; Rochman, D.: TENDL-2011: TALYS-based Evaluated Nuclear Data Library. Nuclear Research and Consultancy Group (NRG) Petten, The Netherlands. http://www.talys.eu/tendl-2011 (2012)Search in Google Scholar
20 Koning, A. J.; Delaroche, J. P.: (2003) Local and global nucleon optical models from 1 keV to 200 MeV. Nucl Phys A713: 231–31010.1016/S0375-9474(02)01321-0Search in Google Scholar
21 Maiti, M.; Lahiri, S.: Theoretical approach to explore the production routes of astatine radionuclides. Phys. Rev. C79 (2009) 24611Search in Google Scholar
22 Watanabe, S.: High energy scattering of deuterons by complex nuclei. Nucl. Phys.8 (1958) 484–492Search in Google Scholar
23 Ericson, T.: The statistical model and nuclear level densities. Adv. Phys.9 (1960) 425Search in Google Scholar
24 Gilbert, A.; Cameron, A. G.: A composite nuclear-level density formula with shell corrections. Can. J. Phys.43 (1965) 1446Search in Google Scholar
25 Hauser, W.; Feshbach, H.: The inelastic scattering of neutrons. Phys. Rev. C87 (1952) 366Search in Google Scholar
26 Kalbach, C.: Pre-equilibrium reactions with complex particle channels. Phys. Rev. C71 (2005) 1Search in Google Scholar
27 Sadeghi, M.; Enferadi, M.; Bakhtiari, M.: Accelerator production of the positron emitter zirconium-89. Ann. Nucl. Energy41 (2012) 97Search in Google Scholar
28 Enferadi, M.; Sadeghi, M.; Bolourinovin, F.: Accelerator production and nuclear aspects of 88Y: an efficient radiotracer. Nucl. Technol. Radiat. Protect.26 (2011) 201Search in Google Scholar
29 Ziegler, J. F.; Ziegler, M. D.; Biersack, J. P.: SRIM – the stopping and range of ions in matter. Nucl. Instrum. and Methods B268 (2010) 818Search in Google Scholar
30 Qaim, S. M.: Cyclotron production of medical radionuclides. In: Vertis, A., Nagy, S., Klencsar, Z.; Lovas, R. G.; RöschF. (Ed.), Handbook of Nuclear Chemistry, Second edition, Springer Science, 4, (2011) pp. 1904–1930Search in Google Scholar
31 Sadeghi, M.; Enferadi, M.: Nuclear model calculations on the production of 119Sb via various nuclear reactions. Ann. Nucl. Energy38 (2011) 825Search in Google Scholar
32 Sadeghi, M.; Enferadi, M.; Ensaf, M.: 124I production for PET imaging at a cyclotron. Kerntechnik77 (2012) 45Search in Google Scholar
33 Sadeghi, M.; Alipoor, Z.; Aslani, G.: Cyclotron production of 85Sr by proton irradiation of natRb. Kerntechnik76 (2011) 373Search in Google Scholar
34 Enferadi, M.; Sadeghi, M.; Ensaf, M.: Cyclotron production of101Pd/101 mRh radionuclide generator for radioimmunotherapy. Kerntechnik76 (2011) 131Search in Google Scholar
35 Sadeghi, M.; Ghanbarzadeh, A.; Enferadi, M.: Nuclear data for cyclotron production of 114 mIn/114In and 140Nd/140Pr used in gamma camera monitoring, RIT, ERT and PET. Kerntechnik75 (2010) 363Search in Google Scholar
36 Kakavand, T.; Sadeghi, M.; Alipoor, Z.: Nuclear model calculation on charged particle induced reactions to produce 85Sr for diagnostic and endotherapy. Kerntechnik75 (2010) 263Search in Google Scholar
37 Mirzaii, M.; Kakavand, T.; Talebi, M.: Electrodeposition iron target for the cyclotron production of 55Co in labeling proteins. J. Radioanal. Nucl. Chem.292 (2012) 261Search in Google Scholar
38 Kraus, K. A.; Nelson, F.: Metal separations by anion exchange. ASTM Spec. Tech. Pub.195 (1958) 27Search in Google Scholar
39 Thisgaard, H.; Elema, D. R.; JensenM.: Production and dosimetric aspects of the potent Auger emitter 58 mCo for targeted radionuclide therapy of small tumors. Med. Phys.38 (2011) 4535Search in Google Scholar
40 Thisgaard, H.; OlesenM.L.; DamJ.H.: Radiosynthesis of 55Co and 58 mCo labelled DOTATOC for PET imaging and targeted radionuclide therapy. J. Labelled Compd. Radiopharm.54 (2011) 758Search in Google Scholar
41 Gholamzadeh, Z.; Sadeghi, M.; Mirzaei, M.; Aref, M.: Novel method to produce Cd via proton irradiation of electroplated silver on a gold-coated copper backing. Kerntechnik76 (2011) 273Search in Google Scholar
42 Firestone, R. B.; Ekström, L. P.: WWW Table of Radioactive Isotopes, http://ie.lbl.gov/toi/perchart.htm (2004)Search in Google Scholar
© 2013, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Chemistry aspects of the source term formation for a severe accident in a CANDU type reactor
- Analytical study on degraded core quenching
- Experimental investigations on control of flow instability in single-phase natural circulation loop
- Burnup calculations using serpent code in accelerator driven thorium reactors
- Investigation of neutronic effects in structural material of a hybrid reactor by using the MCNPX Monte Carlo transport code
- Nuclear aspects and cyclotron production of the positron emitter 55Co
- Calculation of age-dependent effective doses for external exposure using the MCNP code
- Effect of Cu2+/Al3+ mole ratio on structure of Cu – Al bimetallic nanoparticles prepared by radiation induced method
- A numerical method for resonance integral calculations
- Computational modeling of monoenergetic neutral particle inverse transport problems in slab geometry
- Effects on criticality of selected scattering phase functions in neutron transport equation using the Chebyshev approximation
- U1 and P1 approximations to neutron transport equation for diffusion length calculation
- Technical Notes/Technische Mitteilungen
- TN approximation for the critical size of one-speed neutrons in a slab with anisotropic scattering
- Albedo and constant source problems for extremely anisotropic scattering
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Chemistry aspects of the source term formation for a severe accident in a CANDU type reactor
- Analytical study on degraded core quenching
- Experimental investigations on control of flow instability in single-phase natural circulation loop
- Burnup calculations using serpent code in accelerator driven thorium reactors
- Investigation of neutronic effects in structural material of a hybrid reactor by using the MCNPX Monte Carlo transport code
- Nuclear aspects and cyclotron production of the positron emitter 55Co
- Calculation of age-dependent effective doses for external exposure using the MCNP code
- Effect of Cu2+/Al3+ mole ratio on structure of Cu – Al bimetallic nanoparticles prepared by radiation induced method
- A numerical method for resonance integral calculations
- Computational modeling of monoenergetic neutral particle inverse transport problems in slab geometry
- Effects on criticality of selected scattering phase functions in neutron transport equation using the Chebyshev approximation
- U1 and P1 approximations to neutron transport equation for diffusion length calculation
- Technical Notes/Technische Mitteilungen
- TN approximation for the critical size of one-speed neutrons in a slab with anisotropic scattering
- Albedo and constant source problems for extremely anisotropic scattering