Startseite Technik Legendre polynomial series of the infinite medium Green's Function in neutral particle transport theory: the half-space albedo problem
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Legendre polynomial series of the infinite medium Green's Function in neutral particle transport theory: the half-space albedo problem

  • M.Ç. Güleçyüz und A. Kaşkaş
Veröffentlicht/Copyright: 5. April 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Series expansion of the infinite medium Green's function in terms of Legendre polynomials is used to solve the half-space albedo problem. The importance of this procedure is that it can be used for the solution of many different physical problems in plane geometry and can be extended to find the solution of the problems in other geometries.

Kurzfassung

Zur Lösung des Halbraum-Albedoproblems wurde die Reihenentwicklung der Greenschen Funktion im unendlichen Medium in Form von Legendre Polynomen angewendet. Die Bedeutung dieses Verfahrens liegt darin, dass es für die Lösung eine ganze Reihe von physikalischen Problemen in ebener Geometrie verwendet und für die Bestimmung von Lösungen in anderen Geometrien erweitert werden kann.


E-mail:

References

1 Benoist, P.; KavenokyA.: A New Method of Approximation of the Boltzmann Equation. Nuc. Sci. Eng.32 (1968) 225Suche in Google Scholar

2 Kavenoky, A.: The CN Method of Solving of the Transport Equation: Application to Plane Geometry. Nucl. Sci. Eng.65 (1978a) 20910.13182/NSE78-A27152Suche in Google Scholar

3 Kavenoky, A.: The CN Method of Solving of the Transport Equation: Application to Cylindrical Geometry. Nuc. Sci. Eng.65 (1978b) 51410.13182/NSE78-A27182Suche in Google Scholar

4 Tezcan, C.; Güleçyüz, M. Ç.; Erdogan, F.: A New Approach of Solving the Third Form of The Transport Equation in Plane Geometry: Half-Space Albedo Problem. Quant. Spectrosc. Radiat. Transfer55 (1996) 251Suche in Google Scholar

5 Case, K. M.; Hoffmann, F.; Placzek, G.: Introduction to the Theory of Neutron Diffusion, Vol. 1, Los Alamos Scientific Laboratory (1953)Suche in Google Scholar

6 Bell, G. I.; Glasstone, S.: Nuclear Reactor Theory. Van Nostrand Reinhold, New York (1972)Suche in Google Scholar

7 Kavenoky, A.: La Méthode CN de résolution de léquation du Transport. Thése de Doctorat, Orsay (1973)Suche in Google Scholar

8 Tezcan, C.; Güleçyüz, M. Ç.; Kaskas, A.: The Singular Eigenfunction Method: The Milne Problem for Isotropic and Extremely Anisotropic Scattering. J. Quant. Spectrosc. Radiat. Transfer62 (1999) 4910.1016/S0022-4073(98)00040-5Suche in Google Scholar

9 Güleçyüz, M. Ç.; Kaşkaş, A.; Tezcan, C.: Slab Albedo Problem for Anisotropic Scattering Using Singular Eigenfunction Solution of The CN Equations. J. Quant. Spectrosc. Radiat. Transfer61, no. 3, (1999) 329Suche in Google Scholar

10 Kaşkaş, A.; Tezcan, C.; Güleçyüz, M. Ç: The Solution of The Third Form Transport Equation Using Singular Eigenfunctions: The Slab and The Sphere Criticality Problems. J. Quant. Spectrosc. Radiat. Transfer66 No. 6, (2000) 519Suche in Google Scholar

11 Case, K. M.; Zweifel, P. F.: Linear Transport Theory. Addition-Wesley Reading Mass. (1967)Suche in Google Scholar

Received: 2009-4-11
Published Online: 2013-04-05
Published in Print: 2009-11-01

© 2009, Carl Hanser Verlag, München

Heruntergeladen am 13.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110046/html?lang=de
Button zum nach oben scrollen