Startseite Technik CFD modelling of insulation debris transport phenomena in water flow
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

CFD modelling of insulation debris transport phenomena in water flow

  • E. Krepper , G. Cartland-Glover und A. Grahn
Veröffentlicht/Copyright: 5. April 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behaviour of emergency core cooling systems during all types of loss of coolant accidents. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Görlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description. While the experiments are performed at the University at Zittau/Görlitz, the theoretical modelling efforts are concentrated at Forschungszentrum Dresden-Rossendorf. In the current paper the basic concepts for CFD modelling are described and feasibility studies are presented.

Kurzfassung

Die Untersuchung von Freisetzung, Transport und Ablagerung von Isolationsmaterial ist in der Sicherheitsforschung von Druck- und Siedewasserreaktoren für die Betrachtung der Langzeit-Notkühlung bei Leckstörfällen wichtig. Zwischen der Hochschule Zittau und dem Forschungszentrum Dresden-Rossendorf wird durch das Bundesministerium für Wirtschaft und Technologie ein Projekt zur Untersuchung damit im Zusammenhang stehender Fragen gefördert. Das Projekt befasst sich der experimentellen Untersuchung des Fasertransportes und der darauf basierenden Entwicklung von CFD-Modellen. Während in der Hochschule Zittau Experimente durchgeführt werden, sind die Arbeiten zur CFD-Modellierung in Rossendorf konzentriert. Neben dem Transport der Fasern in einer Wasserströmung werden Fragen der Anlagerung von Fasern und des Differenzdruckaufbaus auf einem faserbelegten Sieb untersucht. Die vorliegende Arbeit stellt die wesentlichsten Konzepte der CFD-Modellierung sowie Machbarkeitsstudien vor.

References

1 Knowledge Base for the Effect of Debris on Pressurized Water Reactor Emergency Core Cooling Sump Performance, NUREG/CR-6808; LA-UR-03-0880 (2003)Suche in Google Scholar

2 Alt, S.; Hampel, R.; Kästner, W.; Seeliger, A.; Cartland-Glover, G.; Grahn, A.; Krepper, E.: Experiments for CFD-modelling of cooling water and insulation debris two phase flow phenomena during loss of coolant accidents. 12th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-12), Log-No. 22, 30.09.–04.10.2007, Pittsburgh, USASuche in Google Scholar

3 Batchelor, G. K.: The effect of Brownian motion on the bulk stress in a suspension of spherical particles. Journal of Fluid Mechanics83 (1977) 97117Suche in Google Scholar

4 Bin, A. K.: Gas entrainment by plunging liquid jets. Chem. Eng. Sci. Vol.48 (1993) 35853630Suche in Google Scholar

5 Bonetto, F.; LaheyJr., R. T.: An experimental study on air carry under due to a plunging liquid jet. Int. J. Multiphase Flow19 (1993) 28129410.1016/0301-9322(93)90003-DSuche in Google Scholar

6 Burns, A. D.; Frank, T.; Hamill, I.; Shi, J.-M.: The Favre Averaged Drag Model for Turbulent Dispersion in Eulerian Multi-Phase Flows. 5th International Conference on Multiphase Flow, ICMF'04, Yokohama, Japan, May 30–June 4, 2004, Paper No. 392Suche in Google Scholar

7 Coulson, J. M.; Richardson, J. F.; Backhurst, J. R.; Harker, J. H.: Coulson & Richardson's Chemical Engineering, Volume 1, Fourth Edition (pages 69, 77). Pergamon Press, Oxford & New York (1990).Suche in Google Scholar

8 Cummings, P. D.; Chanson, H.: Air entrainment in the developing flow region of plunging jets – Part 1: Theoretical Development. Transactions of the ASME, Journal of Fluids Engineering Vol. 119, (1997), pp. 59760210.1115/1.2819286Suche in Google Scholar

9 Cummings, P. D.; Chanson, H.: Air entrainment in the developing flow region of plunging jets – Part 2: Experimental, Transactions of the ASME, Journal of Fluids Engineering119 (1997) 603608Suche in Google Scholar

10 Davies, C. N.: The separation of airborne dust and particles. Proc. Inst. Mech. Engrs. 1B (1952) 185198Suche in Google Scholar

11 Ergun, S.: Fluid flow through packed columns. Chemical Engineering Progress48 (1952) 8994Suche in Google Scholar

12 Grahn, A.; Krepper, E.; Alt, S.; Kästner, W.: Modelling of differential pressure buildup during flow through beds of fibrous materials. Chemical Engineering and Technology29 (2006) 9971000Suche in Google Scholar

13 Haider, A.; Levenspiel, O.: Drag coefficient and terminal velocity of spherical and non spherical particles. Powder Technology58 (1989) 6370Suche in Google Scholar

14 Hwang, W.; Eaton, J. K.: Turbulence attenuation by small particles in the absence of gravity. International Journal of Multiphase Flow32 (2006) 1386139610.1016/j.ijmultiphaseflow.2006.06.008Suche in Google Scholar

15 Iguchi, M.; Okita, K.; Yamamoto, F.: Mean velocity and turbulence characteristics of water flow in the bubble dispersion region induced by plunging water jet, Int. J. Multiphase Flow Vol. 24, no. 4 (1998) pp. 52353710.1016/S0301-9322(97)00084-0Suche in Google Scholar

16 Jönsson, K. A.-S.; Jönsson, B. T. L.: Fluid flow in compressible porous media: I: Steady-state conditionsAIChE J. Vol. 38 (1992) 13401348Suche in Google Scholar

17 Krieger, L. M.; Dougherty, T. J.: A mechanism for non-Newtonian flow in suspensions of rigid spheres. Transactions of the Society of Rheology3 (1959) 13715210.1122/1.548848Suche in Google Scholar

18 Maron, S. H.; Pierce, P. E.: Application of Ree-Eyring generalized flow theory to suspensions of spherical particles. Journal of Colloid Science11 (1956) 8095Suche in Google Scholar

19 Moraga, F. J.; Larreteguy, A. E.; Drew, D. A.; LaheyJr., R. T.: Assessment of turbulent dispersion models for bubbly flows in the low Stokes number limit. International Journal of Multiphase Flow29 (2003) 65567310.1016/S0301-9322(03)00018-1Suche in Google Scholar

20 Rao, D. V.; Shaffer, C.; Letellier, B. C.; Maji, A. K.; Bartlein, L.; Jain, B. P.; Marshall, M. L.: GSI-191: Integrated debris-transport tests in water using simulated containment floor geometries, NUREG/CR-6773; LA-UR-02-6786, 2002Suche in Google Scholar

21 Salman, A. D.; Verba, A.: New approximate equations to estimate the drag coefficient of different particles of regular shape. Periodica Polytechnica of the Technical University Budapest – Chemical Engineering32 (1988) 261268Suche in Google Scholar

22 Schiller, L.; Nauman, A.: VDI Zeitschrift, 77 (1933) 318Suche in Google Scholar

23 Turney, M. A.; Cheung, M. K.; Powell, R. L.; McCarthy, M. J.: Hindered Settling of Rod-Like Particles Measured with Magnetic Resonance Imaging. AIChE Journal41 (1995)10.1002/aic.690410207Suche in Google Scholar

24 Xu, J.; Chatterjee, S.; Koelling, K. W.; Wang, Y.; Bechtel, S. E.: Shear and extensional rheology of nanocarbon fiber suspensions. Rheologica Acta44 (2005) 53756210.1007/s00397-005-0436-5Suche in Google Scholar

Received: 2009-7-3
Published Online: 2013-04-05
Published in Print: 2009-11-01

© 2009, Carl Hanser Verlag, München

Heruntergeladen am 11.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110043/html
Button zum nach oben scrollen