Home Technology Investigation of coolant mixing in head parts of VVER-440 fuel assemblies with burnable poison
Article
Licensed
Unlicensed Requires Authentication

Investigation of coolant mixing in head parts of VVER-440 fuel assemblies with burnable poison

  • S. Tóth and A. Aszódi
Published/Copyright: April 5, 2013
Become an author with De Gruyter Brill

Abstract

Detailed CFD model for the head parts of the VVER-440 fuel assemblies with burnable poison has been developed. The coolant mixing was analyzed in some typical assemblies with this model and the signals of the in-core thermocouples above the selected assemblies were calculated. The investigations pointed out that the mixing is intensive in these assembly heads but the coolant is not perfectly mixed before reaching the thermocouples. Significant differences between the outlet average coolant temperatures and the thermocouple signals were revealed in the case of the fresh fuels. These deviations can cause about 6 % underestimations in the online monitored assembly powers unless a proper correction is introduced. The coolant mixing was also studied by means of numerical tracers and weight factors of selected rod bundle regions for the in-core thermocouple were determined. Using these weight factors and the outlet enthalpies of the assemblies' subchannels, the thermocouple signals can be corrected.

Kurzfassung

Für die Kopfteile von WWER-440 Brennelementen wurde ein detailliertes CFD-Modell entwickelt, das die Berücksichtung von Neutronengiften ermöglicht. Mithilfe dieses Modells wurde die Kühlmittelvermischung für typische Brennelemente berechnet. Dabei wurden auch die Temperaturen an den Stellen innerhalb der Brennelemente bestimmt, an denen Thermoelemente im Reaktorkern angeordnet sind. So konnte nicht nur die Kühlmittelvermischung, sondern auch lokale Temperaturen verglichen werden. Die Untersuchungen zeigten, dass die Mischung innerhalb der Brennelementkopfstücke sehr intensiv ist jedoch vor Erreichen der Thermoelementpositionen noch nicht perfekt ist. Bei Berücksichtigung von frischem Brennstoff wurden signifikante Unterschiede zwischen den mittleren Kühlmittelaustrittstemperaturen und den Messwerten festgestellt. Diese Abweichungen können zur Unterschätzung der online berechneten Brennelementleistung von 6 % führen ohne Berücksichtigung einer sinnvollen Korrektur. Des Weiteren wurde die Kühlmittelvermischung auch bei Verwendung von numerischen Tracern and Einflussgrößen in ausgewählten Brennstabbündelregionen untersucht. Dabei wurden die gemessenen lokalen Temperaturen im Kern richtig berechnet. Aus dieser Untersuchung wurden die notwendigen Einflussgrößen (u. a. Austrittsenthalpien der Brennelementunterkanäle) für eine angemessene Korrektur der Leistungsberechnung abgeleitet.


E-mail: ,

References

1 Petényi, V.; Klucárová, K.; Remiš, J.; Chapcak, V.: Fuel assembly outlet temperature profile influence on core by-pass flow and power distribution determination in VVER-440 Reactors. Proc. Int. Conf. 13th Symposium of Atomic Energy Research on VVER Reactor Physics and Reactor Safety, Dresden, Germany, September 22–26, 2003, p. 695Search in Google Scholar

2 Légrádi, G.; Aszódi, A.: Detailed CFD analysis of coolant mixing in VVER-440 fuel assembly heads performed with the code CFX-5.5. Proc. Int. Conf. 13th Symposium of Atomic Energy Research on VVER Reactor Physics and Reactor Safety, Dresden, Germany, September 22–26, 2003, p. 77310.1115/ICONE12-49325Search in Google Scholar

3 Toppila, T.; Lestinen, V.; SiltanenP.: CFD simulation of coolant mixing inside the fuel assembly top nozzle and core exit channel of a VVER-440 reactor. Proc. Int. Conf. 14th Symposium of Atomic Energy Research on VVER Reactor Physics and Reactor Safety, Helsinki, Finland, September 13–17, 2004, p. 331Search in Google Scholar

4 Kobzar, L. L.; Oleksyuk, D. A.: Experiments on simulation of coolant mixing in fuel assembly head and core exit channel of VVER-440 reactor. Proc. Int. Conf. 16th Symposium of Atomic Energy Research on VVER Reactor Physics and Reactor Safety, Bratislava, Slovakia, September 22–29, 2006, p. 95Search in Google Scholar

5 Tar, D.; Baranyai, G.; Ézsöl, Gy.; Tóth, I.: Experimental investigation of coolant mixing in VVER reactor fuel bundles by particle image velocimetry. OECD/NEA & IAEA Workshop – Experiments and CFD Code Applications to Nuclear Reactor Safety, Grenoble, France, September 10–12, 2008Search in Google Scholar

6 ANSYS Inc.: ANSYS CFX-Solver Modeling Guide, ANSYS CFX-Solver Theory Guide, 2007Search in Google Scholar

7 Tóth, S.; Aszódi, A.: CFD study on coolant mixing in VVER-440 fuel rod bundles and fuel assembly heads. OECD/NEA & IAEA Workshop – Experiments and CFD Code Applications to Nuclear Reactor Safety, Grenoble, France, September 10–12, 2008Search in Google Scholar

8 Mahaffy, J.et al.: Best practice guidelines for the use of CFD in nuclear reactor safety applications. NEA/CSNI/R5 (2007), 2007Search in Google Scholar

9 Szécsényi, Zs.; Beliczai, B.; Parkó, T.: Personal communication. Paks NPP, Hungary, 2009Search in Google Scholar

10 Rowe, D. S.: COBRA-IIIC: a digital computer program for steady-state and transient thermal hydraulic analysis of rod bundle nuclear fuel elements. Battelle Pacific Northwest Laboratory, Richland, Washington, USA, 197310.2172/4480166Search in Google Scholar

11 Tóth, S.; Aszódi, A.: Detailed analysis of coolant flow in VVER-440 fuel rod bundle. Proc. Int. Conf. 16th Symposium of Atomic Energy Research on VVER Reactor Physics and Reactor Safety, Bratislava, Slovakia, September 22–29, 2006, p. 465Search in Google Scholar

Received: 2009-7-13
Published Online: 2013-04-05
Published in Print: 2009-11-01

© 2009, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110044/html
Scroll to top button