Home Technology Legendre polynomial series of the infinite medium Green's Function in neutral particle transport theory: the half-space albedo problem
Article
Licensed
Unlicensed Requires Authentication

Legendre polynomial series of the infinite medium Green's Function in neutral particle transport theory: the half-space albedo problem

  • M.Ç. Güleçyüz and A. Kaşkaş
Published/Copyright: April 5, 2013
Become an author with De Gruyter Brill

Abstract

Series expansion of the infinite medium Green's function in terms of Legendre polynomials is used to solve the half-space albedo problem. The importance of this procedure is that it can be used for the solution of many different physical problems in plane geometry and can be extended to find the solution of the problems in other geometries.

Kurzfassung

Zur Lösung des Halbraum-Albedoproblems wurde die Reihenentwicklung der Greenschen Funktion im unendlichen Medium in Form von Legendre Polynomen angewendet. Die Bedeutung dieses Verfahrens liegt darin, dass es für die Lösung eine ganze Reihe von physikalischen Problemen in ebener Geometrie verwendet und für die Bestimmung von Lösungen in anderen Geometrien erweitert werden kann.


E-mail:

References

1 Benoist, P.; KavenokyA.: A New Method of Approximation of the Boltzmann Equation. Nuc. Sci. Eng.32 (1968) 225Search in Google Scholar

2 Kavenoky, A.: The CN Method of Solving of the Transport Equation: Application to Plane Geometry. Nucl. Sci. Eng.65 (1978a) 20910.13182/NSE78-A27152Search in Google Scholar

3 Kavenoky, A.: The CN Method of Solving of the Transport Equation: Application to Cylindrical Geometry. Nuc. Sci. Eng.65 (1978b) 51410.13182/NSE78-A27182Search in Google Scholar

4 Tezcan, C.; Güleçyüz, M. Ç.; Erdogan, F.: A New Approach of Solving the Third Form of The Transport Equation in Plane Geometry: Half-Space Albedo Problem. Quant. Spectrosc. Radiat. Transfer55 (1996) 251Search in Google Scholar

5 Case, K. M.; Hoffmann, F.; Placzek, G.: Introduction to the Theory of Neutron Diffusion, Vol. 1, Los Alamos Scientific Laboratory (1953)Search in Google Scholar

6 Bell, G. I.; Glasstone, S.: Nuclear Reactor Theory. Van Nostrand Reinhold, New York (1972)Search in Google Scholar

7 Kavenoky, A.: La Méthode CN de résolution de léquation du Transport. Thése de Doctorat, Orsay (1973)Search in Google Scholar

8 Tezcan, C.; Güleçyüz, M. Ç.; Kaskas, A.: The Singular Eigenfunction Method: The Milne Problem for Isotropic and Extremely Anisotropic Scattering. J. Quant. Spectrosc. Radiat. Transfer62 (1999) 4910.1016/S0022-4073(98)00040-5Search in Google Scholar

9 Güleçyüz, M. Ç.; Kaşkaş, A.; Tezcan, C.: Slab Albedo Problem for Anisotropic Scattering Using Singular Eigenfunction Solution of The CN Equations. J. Quant. Spectrosc. Radiat. Transfer61, no. 3, (1999) 329Search in Google Scholar

10 Kaşkaş, A.; Tezcan, C.; Güleçyüz, M. Ç: The Solution of The Third Form Transport Equation Using Singular Eigenfunctions: The Slab and The Sphere Criticality Problems. J. Quant. Spectrosc. Radiat. Transfer66 No. 6, (2000) 519Search in Google Scholar

11 Case, K. M.; Zweifel, P. F.: Linear Transport Theory. Addition-Wesley Reading Mass. (1967)Search in Google Scholar

Received: 2009-4-11
Published Online: 2013-04-05
Published in Print: 2009-11-01

© 2009, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110046/html
Scroll to top button