Chebyshev acceleration of criticality calculations in boundary element applications to neutron diffusion
-
O. Engin
and B. Ozgener
Abstract
In this study, Chebyshev polynomial method has been applied in the acceleration of the outer iterations for the numerical solution of the two dimensional neutron diffusion equation by the boundary element method. Boundary element discretization of the diffusion equation results in a full and nonsymmetric coefficient matrix which is quite different than the sparse and symmetrical matrices of the finite element and finite difference methods to which Chebyshev acceleration has been classically applied. To assess the merit of the Chebyshev method in the case of boundary element discretization of the multigroup diffusion equation constitutes the main objective of the study. Numerical experimentation has established that the Chebyshev acceleration is effective also in case of boundary element discretization despite the dissimilarity of the coefficient matrices compared to the more conventional methods.
Kurzfassung
In der vorliegenden Arbeit wurde die Methode der Tschebyscheff-Polynome angewandt zur Beschleunigung der äußeren Iterationen für die numerische Lösung der zweidimensionalen Neutronendiffusionsgleichung mit Hilfe der Randelementmethode. Die Diskretisierung der Randelemente der Diffusionsgleichung ergibt eine voll besetzte nicht-symmetrische Koeffizientenmatrix, die sich erheblich unterscheidet von den schwach besetzten symmetrischen Matrizen der Finite-Elemente-Methode und der Finite-Differenzen-Methode, auf die die Tschebyscheff-Beschleunigung klassischerweise angewandt wird. Die Bestimmung der Vorzüge der Tschebyscheff-Methode bei der Diskretisierung der Randelemente von Multigruppen-Diffusionsgleichungen ist das Hauptanliegen dieser Studie. Numerische Berechnungen haben gezeigt, dass die Tschebyscheff-Beschleunigung eine effektive Methode ist, auch im Falle der Diskretisierung von Randelementen trotz der Unterschiedlichkeit der Koeffizientenmatrizen, verglichen mit konventionelleren Verfahren.
References
1 Ozgener, B.; Ozgener, H. A.: The solution of the criticality eigenvalue problems in the application of the boundary element method to the neutron diffusion equation. Annals of Nuclear Energy20 (7) (1993) 503 10.1016/0306-4549(93)90090-CSearch in Google Scholar
2 Brebbia, C. A.; Dominguez, J.: Boundary Elements an Introductory Course. Computational Mechanics Publications. Avon. 1989Search in Google Scholar
3 Itagaki, M.: Boundary element methods applied to two-dimensional neutron diffusion Equation. Journal of Nuclear Science and Technology22 (1985) 565Search in Google Scholar
4 Purwadi, M. D.; Tsuji, M. N.; Narita, M.; Itagaki, M.: An application of the domain decomposition method into the boundary element method for solving the multi-region neutron diffusion equation. Engineering Analysis with Boundary Elements20 (1998) 197Search in Google Scholar
5 Ozgener, B.; Ozgener, H. A.: A multi-region boundary element method for multigroup neutron diffusion calculations. Annals of Nuclear Energy28 (6) (2001) 585 10.1016/S0306-4549(00)00074-8Search in Google Scholar
6 Maiani, M.; Montagnini, B.: A Galerkin approach to the boundary element-response matrix method for the multigroup neutron diffusion equations. Annals of Nuclear Energy31 (2004) 1447Search in Google Scholar
7 Cavdar, S.; Ozgener, H. A.: A finite element/boundary element hybrid method for 2-D neutron diffusion calculations. Annals of Nuclear Energy31 (2004) 1555 10.1016/j.anucene.2004.04.006Search in Google Scholar
8 Ozgener, B.; Cavdar, S.; Ozgener, H. A.: The extension of the 2-D finite element/boundary element hybrid method to general multigroup neutron diffusion theory. Kerntechnik72 (2007) 280Search in Google Scholar
9 Nowak, A. J.; Neves, A. C.: The Multiple Reciprocity Boundary Element Methods, Computational Mechanics Publications. Southampton, Boston. 1994Search in Google Scholar
10 Ozgener, B.; Ozgener, H. A.: The application of the multiple reciprocity method to the boundary element formulation of the neutron diffusion equation. Annals of Nuclear Energy21 (11) (1994) 711 10.1016/0306-4549(94)90037-XSearch in Google Scholar
11 Ozgener, B.: A boundary integral equation for boundary element applications in multigroup neutron diffusion theory. Annals of Nuclear Energy25 (6) (1998) 347 10.1016/S0306-4549(97)00073-XSearch in Google Scholar
12 Alp, C.: The calculation of neutron physics design of a new type pool reactor in the form of a checker-board core (in Turkish), Ph.D. Thesis, Institute of Nuclear Energy, Istanbul Technical University, 1976Search in Google Scholar
13 Saad, Y.: Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems. Mathematics of Computation42 (166) (1984) 567 10.1090/S0025-5718-1984-0736453-8Search in Google Scholar
14 Ozgener, B.; Kabadayi, Y.: The acceleration of the finite element solutions of the diffusion theory criticality eigenvalue problem by Chebyshev polynomial extrapolation (in Turkish). In Proceedings of the Seventh National Meetings on Nuclear Sciences and Technology, Istanbul, September 1–6, 1996Search in Google Scholar
15 Woznicki, Z. I.: The numerical analysis of eigenvalue problem solutions in the multigrup neutron diffusion theory. Progress in Nuclear Energy33 (3) (1998) 301 10.1016/S0149-1970(96)00026-1Search in Google Scholar
16 Wang, Y.; Bangerth, W.; Ragusa, J.: Three-dimensional h-adaptivity for the multigroup neutron diffusion equations. Progress in Nuclear Energy51 (3) (2009) 543 10.1016/j.pnucene.2008.11.005Search in Google Scholar
17 Nakamura, S.: Coarse mesh acceleration of iterative solution of neutron diffusion equation. Nuclear Science and Engineering43 (1971) 116Search in Google Scholar
18 Vidal, V.; Verdu, G.; Ginestar, D.; Munoz-Cobo, J. L.: Variational acceleration for subspace iteration method. Application to Nuclear Power Reactors. International Journal for Numerical Methods in Engineering41 (1998) 391Search in Google Scholar
19 Engin, O.: Chebyshev polynomial acceleration in the application of the boundary element method to the neutron diffusion equation (in Turkish), Ph.D. Thesis. Institute of Energy, Istanbul Technical University, 2006Search in Google Scholar
20 Varga, R. S.: Matrix iterative analysis. Prentice-Hall, Englewood Cliffs, N.J.1962Search in Google Scholar
21 Faddeeva, V. N.: Computational Methods of Linear Algebra (Translated by C. D.Benster). Dover Pub. Inc., New York. 1959Search in Google Scholar
22 Fox, L.; Parker, I. B.: Chebyshev Polynomials in Numerical Analysis. Oxford University Press, London. 1968Search in Google Scholar
23 Mason, J. C.; Handscomb, D. C.: Chebyshev polynomials. Chapman & Hall/CRC, Boca Raton, Fla. 200310.1201/9781420036114Search in Google Scholar
24 Hageman, L. A.; Young, D. M.: Applied Iterative Methods. Academics Press, Inc.New York1981Search in Google Scholar
25 Varga, R. S.: Numerical methods for solving multigroup diffusion equations. Proceedings of Symposia in Applied Mathematics, Nuclear Reactor Theory, American Mathematical Society, Providence, Rhode Islands11 (1961) 164Search in Google Scholar
© 2009, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Main results of the European project NURESIM on the CFD-modelling of two-phase Pressurized Thermal Shock (PTS)
- Simulation of H2 distribution and combustion in LWR containments using Lumped Parameter Codes
- CFD modelling of insulation debris transport phenomena in water flow
- Investigation of coolant mixing in head parts of VVER-440 fuel assemblies with burnable poison
- Prediction of time dependent standby failure rates for periodically tested components taking into account the operational history
- Closed loop auto control system software for Miniature Neutron Source Reactors (MNSRs)
- Numerical simulation of passive catalytic recombiner
- Some affine solutions for CANDLE burn-up waves in 1D-geometry
- Assessment of radiological consequences due to routine atmospheric discharges from nuclear power plants
- Chebyshev acceleration of criticality calculations in boundary element applications to neutron diffusion
- Legendre polynomial series of the infinite medium Green's Function in neutral particle transport theory: the half-space albedo problem
- A model for calculation of forward isotropic scattering with application to transport equation in slab geometry
- Training and retraining programme for research reactor operating personnel
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Main results of the European project NURESIM on the CFD-modelling of two-phase Pressurized Thermal Shock (PTS)
- Simulation of H2 distribution and combustion in LWR containments using Lumped Parameter Codes
- CFD modelling of insulation debris transport phenomena in water flow
- Investigation of coolant mixing in head parts of VVER-440 fuel assemblies with burnable poison
- Prediction of time dependent standby failure rates for periodically tested components taking into account the operational history
- Closed loop auto control system software for Miniature Neutron Source Reactors (MNSRs)
- Numerical simulation of passive catalytic recombiner
- Some affine solutions for CANDLE burn-up waves in 1D-geometry
- Assessment of radiological consequences due to routine atmospheric discharges from nuclear power plants
- Chebyshev acceleration of criticality calculations in boundary element applications to neutron diffusion
- Legendre polynomial series of the infinite medium Green's Function in neutral particle transport theory: the half-space albedo problem
- A model for calculation of forward isotropic scattering with application to transport equation in slab geometry
- Training and retraining programme for research reactor operating personnel