Startseite Technik Main results of the European project NURESIM on the CFD-modelling of two-phase Pressurized Thermal Shock (PTS)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Main results of the European project NURESIM on the CFD-modelling of two-phase Pressurized Thermal Shock (PTS)

  • D. Lucas , D. Bestion , P. Coste , J. Pouvreau , Ch. Morel , A. Martin , M. Boucker , E. Bodèle , M. Schmidtke , M. Scheuerer , B. Smith , M. T. Dhotre , B. Ničeno , M. C. Galassi , D. Mazzini , F. D'Auria , Y. Bartosiewicz , J.-M. Seynhaeve , I. Tiselj , L. Štrubelj , M. Ilvonen , R. Kyrki-Rajamäki , V. Tanskanen , M. Puustinen und J. Laine
Veröffentlicht/Copyright: 5. April 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The European Platform for NUclear REactor SIMulations, (NURESIM project 2005 – 2008) addressed the creation of a Common European Standard Software Platform for modelling, recording, and recovering computer data for nuclear reactors simulations. One work package of the project was dedicated to the analysis and improvement of CFD capabilities for the simulation of two-phase PTS problems. Some SB-LOCA scenarios lead to a situation in which the cold leg is partially or totally uncovered when the Emergency Core Cooling injection is activated. The resulting complex two phase flow can be divided in characteristic flow regions: the jet flow with a free surface between steam and water, the zone of jet impingement, the horizontal two-phase flow and the flow in the downcomer. Many phenomena have to be reflected in a simulation of each separate region, but also when the simulations are coupled reflecting the integral process which is required to predict the thermal loads at the RPV wall. After analyzing the experimental database available for CFD model development and validation and identifying shortcomings of the models different activities were dedicated to the simulation of single flow regions as well as the integral flow. Based on these experiences recommendations for the CFD-simulation of the two-phase PTS problem were obtained.

Kurzfassung

Wesentliche Ergebnisse des EU-Projekts NURESIM zur CFD-Modellbildung für zweiphasige Thermoshockphänomene. Das EU-Projekt Nuclear Reactor Simulations (NURESIM) befasste sich zwischen 2005 und 2008 mit der Erstellung einer Softwareplattform zur Modellierung, Erfassung und dem Austausch von Daten zur Berechnung von in Kernkraftwerken auftretenden Phänomenen. Dabei widmete sich ein Arbeitspaket der Analyse und Verbesserung der CFD-Ressourcen für die Simulation zweiphasiger Thermoschockphänomene. Diese treten z. B. bei SB-LOCA-Szenarien auf, die zur Einspeisung von Notkühlwasser in den teilweise oder ganz freigelegten kalten Strang führen. Um die thermische Belastung der RDB-Wand infolge dieser Strömung berechnen zu können, müssen viele Einzelphänomene in Regionen unterschiedlicher Strömungsmorphologie aber auch im gekoppelten System betrachtet werden. Im Rahmen des Arbeitspaketes wurden nach einer Analyse der experimentellen Datenbasis für eine CFD-Modellentwicklung und -validierung sowie der Defizite existierender Modelle zahlreiche Simulationen zu den einzelnen Regionen und dem integralen System durchgeführt. Basierend auf den dabei gewonnen Erkenntnissen wurden Empfehlungen für die Berechnung zweiphasiger Thermoschockphänomene mit CFD-Programmen abgeleitet. Die wesentlichen Ergebnisse werden in diesem Beitrag dargestellt.

References

1 Bestion, D.et al.: European project for future advances in sciences and technology for nuclear engineering Thermal-Hydraulics (EUROFASTNET). FISA 2003 – EU Research in Reactor Safety, Conclusion Symposium on Shared Cost and Concerted Actions, EC Luxembourg, 10–13 November 2003Suche in Google Scholar

2 Lucas, D. (ed.): Review Identification of relevant PTS-scenarios, state of the art of modelling and needs for model improvements. 6th Euratom Framework Program NURESIM, Deliverable D2.1.1, 2005a. (available at: http://www.nuresim.com/Documents/Document%20Library/SP2%20-%20Thermalhydraulics/Reports/D2.1.1_final.pdf)Suche in Google Scholar

3 Lucas, D.; Bestion, D.; Bodèle, E.; Coste, P.; Scheuerer, M.; D'Auria, F.; Mazzini, D.; Smith, B.; Tiselj, I.; Martin, A.; Lakehal, D.; Seynhaeve, J.-M.; Kyrki-Rajamäki, R.; Ilvonen, M.; Macek, J.: An Overview of the Pressurized Thermal Shock Issue in the Context of the NURESIM Project. Science and Technology of Nuclear Installations. Volume 2009, Article ID 583259, 200910.1155/2009/583259Suche in Google Scholar

4 Lucas, D. (ed.): Review of the existing data basis for the validation of models for PTS. 6th Euratom Framework Program NURESIM, Deliverable D2.1.2, 2005b. (available at: http://www.nuresim.com/Documents/Document%20Library/SP2%20-%20Thermalhydraulics/Reports/D2.1.2_final.pdf)Suche in Google Scholar

5 Galassi, M. C.; Bestion, D.; Morel, C.; Pouvreau, J.; D'Auria, F.: Validation of NEPTUNE_CFD with data of a plunging jet entering a free surface. Nuclear Technology (accepted), (2008)10.13182/NT09-A8851Suche in Google Scholar

6 Iguchi, M.; Okita, K.; Yamamoto, F.: Mean velocity and turbulence characteristics of water flow in the bubble dispersion region induced by plunging water jet. Int. J. Multiphase Flow24 (1998) 523537Suche in Google Scholar

7 Schmidtke, M.; Lucas, D.: CFD Approaches for Modelling Bubble Entrainment by an Impinging Jet, Science and Technology of Nuclear Installations. Volume 2009, Article ID 148436, 200910.1155/2009/148436Suche in Google Scholar

8 Dhotre, M. T.; Smith, B.: CFD simulations of large scale bubble plumes-comparison to experiment. Chem. Eng. Sci.62 (2007) 66156630Suche in Google Scholar

9 Ničeno, B.; Boucker, M.; Smith, B.: Euler-Euler Large Eddy Simulation of a Square Cross-Sectional Bubble Column Using the Neptune_CFD Code, Science and Technology of Nuclear Installations. Volume 2009, Article ID 410272, 200910.1155/2009/410272Suche in Google Scholar

10 Lakehal, D.: LEIS for the Prediction of Turbulent Multifluid Flows Applied to Thermal Hydraulics Applications. XCFD4NRS, Grenoble, 2008Suche in Google Scholar

11 Coste, P.; Pouvreau, J.; Morel, C.; Laviéville, J.-M.; Boucker, M.; Martin, A.: Modeling Turbulence and Friction around a Large Interface in a Three-Dimension Two-Velocity Eulerian Code. NURETH-12, Pittsburgh, USA, 2007Suche in Google Scholar

12 Laviéville, J.; Coste, P.: Numerical modelling of liquid-gas stratified flows using two-phase Eulerian approach. 5th International Symposium on Finite Volumes for Complex Applications, Aussois, France, 2008Suche in Google Scholar

13 Janicot, A.; Bestion, D.: Condensation modelling for ECC injection. Nuclear Engineering and Design145 (1993) 374510.1016/0029-5493(93)90057-GSuche in Google Scholar

14 Coste, P.; Pouvreau, J.; Laviéville, J.-M.; Boucker, M.: A two-phase CFD approach to the PTS problem evaluated on COSI experiment, ICONE 16, Orlando, USA, 200810.1115/ICONE16-48882Suche in Google Scholar

15 Bartosiewicz, Y.; Laviéville, J.-M.; Seynhaeve, J.-M.: A Validation Case for the NEPTUNE_CFD Platform: Instabilities in a Stratified Flow. Experimental, Theoretical and Code to Code Comparisons, NURETH-12, Pittsburgh, USA, 2007Suche in Google Scholar

16 Thorpe, S. A.: Experiments on the instability of stratified shear flows: immiscible fluids. J. Fluid Mech.39 (1969) 2548Suche in Google Scholar

17 Bartosiewicz, Y.; Seynhaeve, J.-M.; Vallée, C.; Höhne, T.; Laviéville, J.-M.: Modelling free surface flows relevant to a PTS scenario: comparison between experimental data and three RANS based CFD-codes. XCFD4NRS, Experiments and CFD Code Applications to Nuclear Reactor Safety OECD/NEA & IAEA, Grenoble, France, 2008Suche in Google Scholar

18 Vallée, C.;. Höhne, T.; Prasser, H.-M. and Sühnel, T.: Experimental investigation and CFD simulation of horizontal stratified two-phase flow phenomena. Nuclear Engineering and Design238 (2008) 637646Suche in Google Scholar

19 Terzuoli, F.; Galassi, M. C.; Mazzini, D.; D'Auria, F.: CFD code validation against stratified air-water flow experimental data. International Conference on Nuclear Energy for New Europe (NENE), Portoroz (SLO), September 10–13 (2007)Suche in Google Scholar

20 Scheuerer, M.; Galassi, M. C.; Coste, P.; D'Auria, F.: Numerical simulation of free surface flow with heat and mass transfer, NURETH-12, Pittsburgh, USA, 2007Suche in Google Scholar

21 Galassi, M. C.; Coste, P.; Morel, C.; Moretti, F.: Two-Phase Flow Simulations for PTS Investigations by Means of NEPTUNE_CFD Code. Science and Technology of Nuclear Installations Volume 2009, Article ID 950536, 200910.1155/2009/950536Suche in Google Scholar

22 Goldbrunner, M.; Karl, J.; Hein, D.: Experimental Investigation of Heat Transfer Phenomena during Direct Contact Condensation in the Presence of Non-Condensable Gas by Means of Linear Raman Spectroscopy. 10th International Symposium on Laser Techniques Applied to Fluid Mechanics, Lisbon, (2000)Suche in Google Scholar

23 Štrubelj, L.; Tiselj, I.: Numerical modeling of condensation of saturated steam on subcooled water surface in horizontally stratified flow. NURETH-12, Pittsburgh, USA, 2007Suche in Google Scholar

24 Štrubelj, L.; Tiselj, I.: Numerical simulation of vapour condensation on highly subcooled liquid surface. XCFD4NRS, Experiments and CFD Code Applications to Nuclear Reactor Safety OECD/NEA & IAEA, Grenoble, France, 2008Suche in Google Scholar

25 Tanskanen, V.; Lakehal, D.; Puustinen, M.: Validation of Direct Contact Condensation CFD models against condensation pool experiment, XCFD4NRS, Experiments and CFD Code Applications to Nuclear Reactor Safety OECD/NEA & IAEA, Grenoble, France, 2008Suche in Google Scholar

26 Lakehal, D.; Fulgosi, M.; Yadigaroglu, G.: DNS of a condensing stratified steam-water flow. ASME, J. Heat Transfer130 (2008) 021501110.1115/1.2789723Suche in Google Scholar

27 Lakehal, D.; Fulgosi, M.; Banerjee, S.; Yadigaroglu, G.: Turbulence and heat transfer in condensing vapor-liquid flow. Phys. Fluids20 (2008) 065101Suche in Google Scholar

Received: 2009-3-17
Published Online: 2013-04-05
Published in Print: 2009-11-01

© 2009, Carl Hanser Verlag, München

Heruntergeladen am 11.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110041/html
Button zum nach oben scrollen