Determination of the Johnson-Cook damage parameter D4 by Charpy impact testing
-
Michał Stopel
, Dariusz Skibicki und Artur Cichański Bydgoszcz
Abstract
This study proposes to design a road support structure subjected to high-strain-rate loading occurring during vehicle collisions. The strain-rate affects both the hardening process and the material failure process. For modeling the strain-rate influence on material, various mathematical material models are used including the Johnoson-Cook model. The main goal of the study is to presenta method for determining the parameters for the Johnson-Cook damage model, a hybrid method which requires Charpy impact tests on a standard specimen with an annular notch and a series of calculations using finite element method simulating the test. The advantages of the presented method compared to existing methods are the high availability of the equipment, simple and quick processing of results and significantly lower costs.
Kurzfassung
Die diesem Beitrag zugrunde liegende Studie hatte zum Ziel, einen Weg aufzuzeigen, um Strukturen, die Beanspruchungen durch hohe Dehnraten bei Fahrzeugkollisionen ausgesetzt sind, zu unterstützen. Die Dehnrate beeinflusst beides, den Verfestigungsprozess und den Schädigungsprozess des Werkstoffes. Um den Einfluss der Dehnrate auf den Werkstoff zu modellieren, werden unterschiedliche mathematische Materialmodelle, wie beispielsweise das Johnson-Cook-Modell verwandt. Das Hauptziel der Studie bestand darin, ein Verfahren zu präsentieren, mit dem die Parameter für das Johnson-Cook-Schädigungsmodell bestimmt werden können. Hierbei handelt es sich um ein Hybridverfahren, das Kerbschlagversuche nach Charpy erfordert, und zwar mittels einer Standardprobe mit einem umlaufenden Kerb, sowie eine reihe von Berechnungen mittels der Finite Elemente Methode (FEM). Die Vorteile des hier vorgestellten Verfahrens bestehen in einer hohen Verfügbarkeit der Versuchseinrichtungen, in der einfachen und schnellen Erarbeitung der Ergebnisse und deutlich geringeren Kosten.
References
1 M.Stopel, D.Skibicki: Determination of Johnson-Cook model constants by measurement of strain rate by optical method, AIP Conference Proceedings 1780 (2016), pp. 6000310.1063/1.4965956Suche in Google Scholar
2 A.Banerjee, S.Dhar, S.Acharyya, D.Datta, N.Nayak: Determination of Johnson cook material and failure model constants and numerical modelling of Charpy impact test of armour steel, Materials Science and Engineering A640 (2015), pp. 200–20910.1016/j.msea.2015.05.073Suche in Google Scholar
3 K.Senthil, M. A.Iqbal, N. K.Gupta: Ballistic resistance of mild steel plates of various thicknesses against 762 AP projectiles, International Journal of Protective Structures8 (2017), No. 2, pp. 177–19810.1177/2041419617700007Suche in Google Scholar
4 R.Kostek, P.Aleksandrowicz: Simulation of car collision with an impact block, IOP Conference Series: Materials Science and Engineering 252 (2017), No. 1 10.1088/1757-899X/252/1/012008Suche in Google Scholar
5 R.Kostek, P.Aleksandrowicz: Simulation of the right-angle car collision based on identified parameters, IOP Conference Series: Materials Science and Engineering 252 (2017), No. 1 10.1088/1757-899X/252/1/012013Suche in Google Scholar
6 M.Stopel, A.Cichański, D.Skibicki: Modeling of prestressed bolt connection in ls-dyna crash test analysis of road infractructure, V.Fuis (Ed.): Eng. Mech. 2017, Acad Sci Czech Republic, Inst Thermomechanics, Svratka, Czechia (2017) pp. 922–925Suche in Google Scholar
7 M.Stopel, D.Skibicki, W.Moćko: Verification of FEM Modelling Capabilities Allowing for the Effects of Strain Rate, Solid State Phenomena250 (2016), pp. 203–20810.4028/www.scientific.net/SSP.250.203Suche in Google Scholar
8 G. R.Johnson, W. H.Cook: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, 7th International Symposium on Ballistics (1983), pp. 541–54710.1038/nrm3209Suche in Google Scholar PubMed PubMed Central
9 P.Verleysen, J.Peirs: Quasi-static and high strain rate fracture behaviour of Ti6Al4V, International Journal of Impact Engineering108 (2017), pp. 370–38810.1016/j.ijimpeng.2017.03.001Suche in Google Scholar
10 Z.Pan, Y.Feng, Y. T.Lu, Y. F.Lin, T. P.Hung, F. C.Hsu, S. Y.Liang: Force modeling of Inconel 718 laser-assisted end milling under recrystallization effects, International Journal of Advanced Manufacturing Technology92 (2017), No. 5–8, pp. 2965–297410.1007/s00170-017-0379-xSuche in Google Scholar
11 R.Kiran, K.Khandelwal: A triaxiality and Lode parameter dependent ductile fracture criterion, Engineering Fracture Mechanics128 (2014), No. C, pp. 121–13810.1016/j.engfracmech.2014.07.010Suche in Google Scholar
12 G. R.Johnson, W. H.Cook: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Engineering Fracture Mechanics21 (1985), No. 1, pp. 31–4810.1016/0013-7944(85)90052-9Suche in Google Scholar
13 Y.Zhang, J. C.Outeiro, T.Mabrouki: On the selection of Johnson-Cook constitutive model parameters for Ti-6Al-4 V using three types of numerical models of orthogonal cutting, Procedia CIRP31 (2015), pp. 112–11710.1016/j.procir.2015.03.052Suche in Google Scholar
14 S. V.Laakso, E.Niemi: Using FEM simulations of cutting for evaluating the performance of different johnson cook parameter sets acquired with inverse methods, Robotics and Computer-Integrated Manufacturing47 (2017), pp. 95–10110.1016/j.rcim.2016.10.006Suche in Google Scholar
15 A.Shrot, M.Bäker: Determination of Johnson–Cook parameters from machining simulations, Computational Materials Science52 (2012), No. 1, pp. 298–30410.1016/j.commatsci.2011.07.035Suche in Google Scholar
16 M.Stopel, D.Skibicki, W.Moćko: Method for determining the strain rate sensitivity factor for the Johnson-Cook model in Charpy tests, Materials Testing59 (2017), No. 11–12, pp. 965–97310.3139/120.111098Suche in Google Scholar
17 Y.Bai, X.Teng, T.Wierzbicki: On the application of stress triaxiality formula for plane strain fracture testing, Journal of Engineering Materials and Technology131 (2009), No. 2, pp. 2100210.1115/1.3078390Suche in Google Scholar
© 2018, Carl Hanser Verlag, München
Artikel in diesem Heft
- Inhalt/Contents
- Contents
- Laudatio
- Professor Dr.-Ing. Harald Zenner: on the occasion of his eightieth birthday
- Fachbeiträge/Technical Contributions
- Fatigue life curve – A continuous Wöhler curve from LCF to VHCF
- On the accuracy of estimating fatigue notch factors
- Analytical strength assessments of austempered ductile iron components
- On the estimation of cyclic material properties – Part 1: Quality of known estimation methods
- On the estimation of cyclic material properties – Part 2: Introduction of a new estimation method
- Execution and evaluation of cyclic tests at constant load amplitudes – DIN 50100:2016
- Wear resistance of laser cladded Stellite 31 coating on AISI 316L steel
- Determination of the Johnson-Cook damage parameter D4 by Charpy impact testing
- Effect of residual Alclad on friction stir spot welds of AA2219 alloys
- Effect of cooling rate on microstructure, mechanical properties and residual stress of 7075 aluminum alloy
- Failure analysis of an adhesively joined composite pipe system under internal pressure
- Non-metallic inclusions and fatigue strength of steel 34CrNiMo6
- Untersuchungen des Schädigungsgrades von Polyethylenformstoffen als Werkstoffe von Heizöllagerbehältern nach einer Nutzungsdauer von über 30 Jahren
- Microstructure and mechanical properties of AZ31 Mg alloy produced by a new compound extrusion technique
- Failure analysis of a cracked Q125 casing for ultra-deep wells at the Tarim Oilfield
Artikel in diesem Heft
- Inhalt/Contents
- Contents
- Laudatio
- Professor Dr.-Ing. Harald Zenner: on the occasion of his eightieth birthday
- Fachbeiträge/Technical Contributions
- Fatigue life curve – A continuous Wöhler curve from LCF to VHCF
- On the accuracy of estimating fatigue notch factors
- Analytical strength assessments of austempered ductile iron components
- On the estimation of cyclic material properties – Part 1: Quality of known estimation methods
- On the estimation of cyclic material properties – Part 2: Introduction of a new estimation method
- Execution and evaluation of cyclic tests at constant load amplitudes – DIN 50100:2016
- Wear resistance of laser cladded Stellite 31 coating on AISI 316L steel
- Determination of the Johnson-Cook damage parameter D4 by Charpy impact testing
- Effect of residual Alclad on friction stir spot welds of AA2219 alloys
- Effect of cooling rate on microstructure, mechanical properties and residual stress of 7075 aluminum alloy
- Failure analysis of an adhesively joined composite pipe system under internal pressure
- Non-metallic inclusions and fatigue strength of steel 34CrNiMo6
- Untersuchungen des Schädigungsgrades von Polyethylenformstoffen als Werkstoffe von Heizöllagerbehältern nach einer Nutzungsdauer von über 30 Jahren
- Microstructure and mechanical properties of AZ31 Mg alloy produced by a new compound extrusion technique
- Failure analysis of a cracked Q125 casing for ultra-deep wells at the Tarim Oilfield