Startseite Microstructure and mechanical properties of AZ31 Mg alloy produced by a new compound extrusion technique
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Microstructure and mechanical properties of AZ31 Mg alloy produced by a new compound extrusion technique

  • Liwei Lu , Zhenru Yin , Jun Zhao , Dongfeng Shi und Chuming Li
Veröffentlicht/Copyright: 26. September 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A new extrusion technique, integrated dual-directional extrusion and spiral deformation(DDES), is proposed and successfully applied to AZ31 Mg alloys with no cracks present in the alloys. Combining finite-element analytic, optical microscopy, and X-ray diffraction techniques, it is found that the DDES process may cause cumulative strains of 1.88 in Mg alloy billet. The average grain size of the alloys can be refined from 300 μm to 3.5 μm at a temperature of 573 K, and the basal texture is also dramatically weakened from 53.6 to 6.52. These improvements are mainly attributed to dynamic recrystallization induced by heavily accumulated strain at the spiral region. Further compressive tests are carried out on processed AZ31 Mg alloys, and the superior compressive strength and fracture strain can attain 395 MPa and 30.6 %, respectively, rendering this new deformation technique into a promising approach for further governing properties of Mg-based alloys.

Kurzfassung

In dem vorliegenden Beitrag wird eine neue Extrusionstechnik, eine integrierte zweigerichtete Extrusion und Spiralverformung, vorgestellt und an Magnesiumlegierungen des Typs AZ 31 angewandt, wobei diese Technik keine Risse hervorrief. Mittels Finite-Elemente-Analysen, Lichtmikroskopie und Röntgendiffraktometrie stellte sich heraus, dass der DDES-Prozess kumulative Dehnungen von 1,88 in den Magnesiumcoupons hervorrufen kann, die durchschnittliche Korngröße von 300 auf 3,5 μm bei einer Temperatur von 573 K reduziert werden kann und dass die grundlegende Textur ebenso dramatisch abnimmt, nämlich von 53,6 auf 6,52, was auf die dynamische Rekristallisation zurückgeführt werden kann, die durch die hochgradig akkumulierten Dehnungen in den Regionen der Spirale zurückgeführt werden kann. Darüber hinaus wurden Druckversuche mit den so hergestellten AZ31 Magnesiumlegierungen durchgeführt, wobei die hervorragende Druckfestigkeit und Bruchdehnung entsprechend auf 395 MPa und 30,6 % erhöhen, was diese neue Verformungstechnik als einen vielversprechenden Ansatz für die weitere Kontrolle der Eigenschaften von Magnesiumlegierungen erscheinen lässt.


*Correspondence Address, Associate Prof. Dr. Liwei Lu, Hunan Provincial Key Laboratory of High Efficiency and Precision Machining of Difficult-to-Cut Material, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China, E-mail:

Assoc. Prof. Li-Wei Lu received his BSc degree from Hunan University of Technology, Zhuzhou City, Hunan Province, China in 2006 and his MSc and PhD degrees from Chongqing University, China in 2012. Currently, he is Associate Professor at Hunan University of Science and Technology, Xiangtan, China.

Zhenru Yin, Jun Zhao and Dongfeng Shi are research assistants at Hunan University of Science and Technology, Xiangtan, China.

Prof. Chuming Liu is Professor at College of Material Science and Engineering, Central South University, Changsha, China. He received his PhD from Central South University, China in 2007. His research interests include wrought magnesium alloys.


References

1 X.Xie, J.Shen, F. B.Gong, D.Wu, T.Zhang, X.Luo, Y.Li: Effects of dwell time on the microstructures and mechanical properties of water bath friction stir spot-welded AZ31 magnesium alloy joints, International Journal of Advanced Manufacturing Technology82 (2016), No. 1–4, pp. 758310.1007/S00170-015-7361-2Suche in Google Scholar

2 H. J.Hu, Y.L.Ying, Z. W.Ou, X. Q.Wang: Influences of extrusion temperatures on the wear behavior of magnesium alloy AZ31 fabricated by the extrusion shear process, Materials Testing59 (2017), No1, pp. 414610.3139/120.110962Suche in Google Scholar

3 F. S.Pan, Q. H.Wang, B.Jiang, J. J.He, Y. F.Chai, J.Xu: An effective approach called the composite extrusion to improve the mechanical properties of AZ31 magnesium alloy sheets, Materials Science and Engineering A655(2016), pp. 33934510.1016/j.msea.2015.12.098Suche in Google Scholar

4 H. J.Hu, Z.Sun, X. Q.Wang, Z. Y.Zhai, J. L.Dai, M. B.Yang: Microstructures of an AZ61 wrought magnesium alloy fabricated by a novel SPD process using thermomechanical simulation, Materials Testing58 (2016), No 1, pp. 434710.3139/120.110817Suche in Google Scholar

5 L. W.Lu, T. M.Liu, Y.Chen, Z. C.Wang: Deformation and fracture behavior of extruded Mg alloys AZ31, Materials Characterization67 (2012), No. 3, pp. 9310010.1016/j.matchar.2012.02.023Suche in Google Scholar

6 X. H.Dong, X. T.Hong, F.Chen, B. R.Sang, W.Yu, X. P.Zhang: Effects of specimen and grain sizes on compression strength of annealed wrought copper alloy at room temperature, Materials & Design64(2014), No. 9, pp. 40040610.1016/j.matdes.2014.08.006Suche in Google Scholar

7 Z. C.Wang, M.Saito, K. P.McKenna, L.Gu, S.Tsukimoto, A. L.Shluger, Y.Ikuhara: Atom-resolved imaging of ordered defect superstructures at individual grain boundaries, Nature479 (2011), pp. 38038310.1038/nature10593Suche in Google Scholar PubMed

8 C. F.Gu, L. S.Tóth, D. P.Field, J. J.Fundenberger, Y. D.Zhang: Room temperature equal-channel angular pressing of a magnesium alloy, Acta Materialia61 (2013), No. 8, pp. 3027303610.1016/j.actamat.2013.01.063Suche in Google Scholar

9 Q.Xue, I. J.Beyerlein, D. J.Alwxander, G. T. G.Iii: Mechanisms for initial grain refinement in OFHC copper during equal channel angular pressing, Acta Materialia55 (2007), No. 2, pp. 65566810.1016/j.actamat.2006.08.049Suche in Google Scholar

10 S.Khoddam, A.Farhoumand, P. D.Hodgson: Axi-symmetric forward spiral extrusion, a kinematic and experimental study, Materials Science and Engineering A528 (2011), No. 3, pp. 1023102910.1016/j.msea.2010.09.062Suche in Google Scholar

11 H. J.Hu, D. F.Zhang, F. S.Pan: Die structure optimization of equal channel angular extrusion for AZ31 magnesium alloy based on finite element method, Transactions of Nonferrous Metals Society of China20 (2010), No. 2, pp. 25926610.1016/S1003-6326(09)60132-1Suche in Google Scholar

12 K.Kim, J.Yoon: Evolution of the microstructure and mechanical properties of AZ61 alloy processed by half channel angular extrusion (HCAE), a novel severe plastic deformation process, Materials Science and Engineering A578 (2013), No. 33, pp. 16016610.1016/j.msea.2013.04.073Suche in Google Scholar

13 M.Karbasi, E. K.Alamdari: Investigation of lead base compiste anodes produced by accumulative roll bonding, Materials & Design67 (2015), pp. 11812910.1016/j.matdes.2014.10.092Suche in Google Scholar

14 A.Vorhauer, R.Pippan: On the homogeneity of deformation by high pressure torsion, Scripta Materialia51 (2004), No. 9, pp. 92192510.1016/j.scriptamat.2004.04.025Suche in Google Scholar

15 H.Huang, Z. B.Tang, Y.Tian, G. Z.Jia, J. L.Niu, H.Zhang, J.Pei, G. Y.Yuan, W. J.Ding: Effects of cyclic extrusion and compression parameters on microstructure and mechanical properties of Mg-1.50Zn-0.25Gd alloy, Materials & Design86 (2015), pp. 78879610.1016/j.matdes.2015.07.155Suche in Google Scholar

16 V. P.Basavaraj, U.Chakkingal, T. S. P.Kumar: Study of channel angle influence on material flow and strain inhomogeneity in equal channel angular pressing using 3D finite element simulation, Journal of Materials Processing Technology209 (2009), No. 1, pp. 899510.1016/j.jmatprotec.2008.01.031Suche in Google Scholar

17 B. L.Wu, G.Wan, Y. D.Zhang, X. H.Du, F.Wagner, C.Eling: Fragmentation of large grains in AZ31 magnesium alloy during ECAE via route A, Materials Science and Engineering A527 (2010), No. 15, pp. 3365337210.1016/j.msea.2010.02.040Suche in Google Scholar

18 H. S.Kim, S. I.Hong, M. H.Seo: Effects of strain hardenability and strain rate sensitivity on the plastic flow and deformation homogeneity during equal channel angular pressing (ECAP), Journal of Material Research16 (2001), No. 3, pp. 85686410.1557/.TMR.2001.0113Suche in Google Scholar

19 F.Fereshteh-Saniee, M.Asgari, M.Barati, S. M.Pezeshki: Effects of die geometry on non-equal channel lateral extrusion (NECLE) of AZ80 magnesium alloy, Transactions of Nonferrous Metals Society of China24 (2014), No. 10, pp. 3274328410.1016/s1003-6326(14)63467-1Suche in Google Scholar

20 H. J.Hu, H.Wang, Z. Y.Zhai, Y. Y.Li, J. Z.Fan, Z. W.Ou: Effects of channel angles on extrusion-shear for AZ31 magnesium alloy: modeling and experiments, International Journal of Advanced Manufacturing Technology76 (2015), No. 9–12, pp. 1621163010.1007/s00170-014-6353-ySuche in Google Scholar

21 F.Li, X.Zeng, N.Bian: Microstructure of AZ31 magnesium alloy produced by continuous variable cross-section direct extrusion (CVCDE), Materials Letters135(2014), No. 10, pp. 798210.1016/j.matlet.2014.07.116Suche in Google Scholar

22 S.Khoddam, A.Farhoumand, P. D.Hodgson: Upper-bound analysis of axi-symmetric forward spiral extrusion, Mechanics of Materials43 (2011), No. 11, pp. 68469210.1016/j.mechmat.2011.07.009Suche in Google Scholar

23 A.Muralidhar, S.Narendranath, H. S.Nayaka: Effect of equal channel angular pressing on AZ31 wrought magnesium alloys, Journal of Magnesium and Alloys1(2013), No. 4, pp. 33634010.1016/j.jma.2013.11.007Suche in Google Scholar

24 T.Krajňák, P.Minárik, J.Gubicza, K.Máthis, R.Kužel, M.Janeček: Influence of equal channel angular pressing routes on texture, microstructure and mechanical properties of extruded AX41 magnesium alloy, Journal of Magnesium and Alloys705 (2017), pp. 27328210.1016/j.jallcom.2017.02.061Suche in Google Scholar

25 A.Yamashita, Z.Horita, T. G.Langdon: Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation, Materials Science and Engineering A300 (2001), No. 1–2, pp. 14214710.1016/S0921-5093(00)01660-9Suche in Google Scholar

26 Q. S.Yang, B.Jiang, W.Jiang, S. Q.Luo, F. S.Pan: Evolution of microstructure and mechanical properties of Mg-Mn-Ce alloys under hot extrusion, Materials Science and Engineering A628 (2015), pp. 4314810.1016/j.msea.2015.01.048Suche in Google Scholar

27 Y.Xu, L. X.Hu, Y.Sun, J. B.Jia, J. F.Jiang, Q. G.Ma: Microstructure and mechanical properties of AZ61 magnesium alloy prepared by repetitive upsetting-extrusion, Transactions of Nonferrous Metals Society of China25 (2015), No. 2, pp. 38138810.1016/S1003-6326(15)63614-7Suche in Google Scholar

Published Online: 2018-09-26
Published in Print: 2018-10-27

© 2018, Carl Hanser Verlag, München

Heruntergeladen am 14.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.111244/html
Button zum nach oben scrollen