Effect of residual Alclad on friction stir spot welds of AA2219 alloys
-
Olatunji Oladimeji Ojo
Abstract
This paper aims to determine the role of in-nugget/residual Alclad in the friction stir spot welds of 1.6 mm thick Alclad AA2219 aluminum alloy via an assessment of microstructure, mechanical properties and fracture modes of welds. Alclad redistribution/dispersion within the stir zone of the alloy is varied by using different tool profiles (pinless and conical pin tools) and welding parameter combinations. The results reveal that a pinless tool facilitates the retention of Alclad within the weld's effective joint line/width while no substantial residual Alclad is observed in the effective bonded width of a conical pin weld. The increase in tool depth improves the weld strength of a pinless weld. The fracture morphology of a pinless weld is influenced by the in-nugget Alclad content. Interfacial fracture with midpoint defect, interfacial fracture and nugget pull-out are the fracture modes of pinless welds while a conical pin weld fails by circumferential nugget shear failure. A direct correlation exists between nugget rotation and lap shear failure load. Maximum lap shear failure loads of 4.0 kN and 2.1 kN are obtained in pinless and conical pin welds at the optimum welding parameter combinations of 1500 rpm – 0.8 mm – 8 s and 1400 rpm – 0.43 mm – 4 s, respectively.
Kurzfassung
Diese Arbeit zielt darauf ab, die Rolle von innenliegenden Nugget/Rest-Alclad in Rührreibpunktschweißungen von 1,6 mm dicker Alclad-AA2219-Aluminiumlegierung über die Bewertung der Mikrostruktur, der mechanischen Eigenschaften und der Brucharten von Schweißnähten zu bestimmen. Die Umverteilung/Dispergierung von Alclad innerhalb der Rührzone der Legierung wird durch Verwendung verschiedener Werkzeugprofile (stiftlose und konische Stiftwerkzeuge) und Schweißparameterkombinationen variiert. Die Ergebnisse zeigen, dass das stiftlose Werkzeug die Retention von Alclad innerhalb der effektiven Fugenlinie/-breite der Schweißnaht fördert, während kein wesentliches restliches Alclad in der effektiven gebundenen Breite der Schweißnaht mit konischem Stiftwerkzeug beobachtet wird. Die Vergrößerung der Werkzeugtiefe verbessert die Schweißnahtfestigkeit von stiftlos erzeugten Schweißnähten. Die Bruchmorphologie der stiftlos erzeugten Schweißnaht wird durch den Gehalt innenliegender Alclad-Nuggets beeinflusst. Grenzflächenbruch mit Mittelpunktdefekt, Grenzflächenbruch und Nuggetausreißen sind die Bruchmodi von stiftlosen Schweißnähten, während konische Stiftschweißung infolge umlaufender Nuggetscherung versagen. Es besteht eine direkte Korrelation zwischen der Drehung der Nuggets und der Zugscherbruchlast. Die maximale Zugscherbruchlast. von 4,0 kN und 2,1 kN werden für stiftlos und mit konischem Stiftwerkzeug erzeugten Schweißnähten bei den optimalen Schweißparameterkombinationen von 1500 U/min – 0,8 mm – 8 s und 1400 U/min – 0,43 mm – 4 s erreicht.
References
1 Z. M.Su, R. Y.He, P. C.Lin, K.Dong: Fatigue analyses for swept friction stir spot welds in lap-shear specimens of alclad 2024-T3 aluminum sheets. International Journal of Fatigue61 (2013), pp. 129–14010.1016/j.ijfatigue.2013.11.021Suche in Google Scholar
2 S. S.Babu, V. S.Sankar, J. G. D.Ram, P. V.Venkitakrishnan, R. G.Madhusudhan, R. K.Prasad: Microstructure and Mechanical properties of friction stir spot welded aluminium alloy AA2014. JMEPEG22 (2013), pp. 71–8410.1007/s11665-012-0218-zSuche in Google Scholar
3 Z.Li, Y.Yue, S.Ji, C.Peng, L.Wang: Optimal design of thread geometry and its performance in friction stir spot welding. Materials & Designs94 (2016), pp. 368–37610.1016/j.matdes.2016.01.081Suche in Google Scholar
4 H. B.Chen, J. F.Wang, G. D.Zhen, S. B.Chen, T.Lin: Effects of initial oxide on microstructure and mechanical properties of friction stir welded AA2219 alloy. Materials & Design86 (2015), pp. 49–5410.1016/j.matdes.2015.06.179Suche in Google Scholar
5 R.Fu, H.Xu, G.Luan, C.Dong, F.Zhang, G.Li: Top surface microstructure of friction-stir welded AA2524-T3 aluminum alloy joints. Materials Characterization65 (2012), pp. 48–5410.1016/j.matchar.2011.12.007Suche in Google Scholar
6 Z.Liu, H.Cui, S.Ji, M.Xu, X.Meng: Improving Joint Features and Mechanical Properties of Pinless Fiction Stir Welding of Alcald 2A12-T4 Aluminum Alloy. Journal of Materials Science & Technology32 (2016), pp. 1372–1377, 10.1016/j.jmst.2016.07.003Suche in Google Scholar
7 Y. Q.Zhao, H. J.Liu, Z.Lin, S. X.Chen, J. C.Hou: Microstructures and mechanical properties of friction spot welded Alclad 7B04-T74 aluminium alloy. Science and Technology of Welding and Joining19 (2014), pp. 617–62210.1179/1362171814Y.0000000235Suche in Google Scholar
8 A.Kubit, R.Kluz, T.Trzepieciński, D.Wydrzyński, W.Bochnowski: Analysis of the mechanical properties and of micrographs of refill friction stir spot welded 7075-T6 aluminium sheets. Archives of Civil and Mechanical Engineering18 (2018), pp. 235–24410.1016/j.acme.2017.07.005Suche in Google Scholar
9 Y. Q.Zhao, H. J.Liu, S. X.Chen, Z.Lin, J. C.Hou: Effects of sleeve plunge depth on microstructures and mechanical properties of friction spot welded alclad 7B04-T74 aluminum alloy. Materials & Design62 (2014), pp. 40–4610.1016/j.matdes.2014.05.012Suche in Google Scholar
10 O. O.Ojo, E.Taban, E.Kaluc: Understanding the role of welding parameters and tool profile on the morphology and properties of expelled flash of spot welds. Materials & Design108 (2016), pp. 518–52810.1016/j.matdes.2016.07.013Suche in Google Scholar
11 A.Reilly, H.Shercliff, Y.Chen, P.Prangnell: Modelling and visualization of material flow in friction stir spot welding. J. Mater. Process. Technol.225 (2015), pp. 473–484, 10.1016/j.jmatprotec.2015.06.021Suche in Google Scholar
12 M.de Leon, H. S.Shin: Material flow behaviours during friction stir spot welding of lightweight alloys using pin and pinless tools. Sci. Technol. Weld. Join.21 (2016), pp. 140–14610.1179/1362171815Y.0000000075Suche in Google Scholar
13 S.Horie, K.Shinozaki, M.Yamamoto, T. H.North: Experimental investigation of material flow during friction stir spot welding. Sci. Technol. Weld. Join.15 (2010), pp. 666–67010.1179/136217110X12785889550145Suche in Google Scholar
14 Y. C.Lin, J. J.Liu, J. N.Chen: Material flow tracking for various tool geometries during the friction stir spot welding process. J. Mater. Eng. Perform.22 (2013), pp. 3674–3683, 10.1007/s11665-013-0680-2Suche in Google Scholar
15 W.Yuan, R. S.Mishra, S.Webb, Y. L.Chen, B.Carlson, D. R.Herling, G. J.Grant: Effect of tool design and process parameters on properties of Al alloy 6016 friction stir spot welds. J Mater Process Technol.211 (2011), pp. 972–977, 10.1016/j.jmatprotec.2010.12.014Suche in Google Scholar
16 H.Badarinarayan, Y.Shi, X.Li, K.Okamoto: Effect of tool geometry on hook formation and static strength of friction stir spot welded aluminium 5754-O sheets. International journal of machine tools and manufacture49 (2009), pp. 814–82310.1016/j.ijmachtools.2009.06.001Suche in Google Scholar
17 O. O.Ojo, E.Taban, E.Kaluc: Friction stir spot welding of aluminium alloys: A recent review. Material testing.57 (2015), pp. 609–627, 10.3139/120.110752Suche in Google Scholar
18 A.Gelich, M.Yamamoto, T. H.North: Strain Rates and Grain Growth in Al 5754 and Al 6061 Friction Stir Spot Welds. Metallurgical and materials transactions A38 (2007), pp. 1291–130210.1007/s11661-007-9155-0Suche in Google Scholar
19 C. I.Cheng, C. J.Lee, J. C.Huang: Relationship between grain size and Zener–Holloman parameter during friction stir processing in AZ31 Mg alloys. Scripta Materialia51 (2004), pp. 509–51410.1016/j.scriptamat.2004.05.043Suche in Google Scholar
20 S.Lathabai, M. J.Painter, G. M. D.Cantin, V. K.Tyagi: Friction spot joining of an extruded Al-Mg-Si alloy. Scripta Materialia55 (2006), pp. 899–90210.1016/j.scriptamat.2006.07.046Suche in Google Scholar
21 Y.Lin, J.Chen: Influence of process parameters on friction stir spot welded aluminium joints by various threaded tools. Journal of materials processing technology225 (2015), pp. 347–35610.1016/j.jmatprotec.2015.06.024Suche in Google Scholar
22 A. H.Plaine, U. F. H.Suhuddin, C. R. M.Afonso, N. G.Alcantara, J. F.dos Santos: Interface formation and properties of friction stir spot welded joints of AA5474 and Ti6Al4 V alloys. materials and design93 (2016), pp. 224–231, 10.1016/j.matdes.2015.12.170Suche in Google Scholar
23 U.Donatus, G. E.Thompson, X.Zhou, J.Wang, K.Beamish: Flow patterns in friction stir welds of AA5083 and AA6082 alloys. Materials & Design83 (2015), pp. 203–21310.1016/j.matdes.2015.06.006Suche in Google Scholar
24 M.Sajed, H.Bisadi: Experimental failure study of friction stir spot welded similar and dissimilar aluminum alloys. Weld World60 (2016), pp. 33–4010.1007/s40194-015-0268-6Suche in Google Scholar
© 2018, Carl Hanser Verlag, München
Artikel in diesem Heft
- Inhalt/Contents
- Contents
- Laudatio
- Professor Dr.-Ing. Harald Zenner: on the occasion of his eightieth birthday
- Fachbeiträge/Technical Contributions
- Fatigue life curve – A continuous Wöhler curve from LCF to VHCF
- On the accuracy of estimating fatigue notch factors
- Analytical strength assessments of austempered ductile iron components
- On the estimation of cyclic material properties – Part 1: Quality of known estimation methods
- On the estimation of cyclic material properties – Part 2: Introduction of a new estimation method
- Execution and evaluation of cyclic tests at constant load amplitudes – DIN 50100:2016
- Wear resistance of laser cladded Stellite 31 coating on AISI 316L steel
- Determination of the Johnson-Cook damage parameter D4 by Charpy impact testing
- Effect of residual Alclad on friction stir spot welds of AA2219 alloys
- Effect of cooling rate on microstructure, mechanical properties and residual stress of 7075 aluminum alloy
- Failure analysis of an adhesively joined composite pipe system under internal pressure
- Non-metallic inclusions and fatigue strength of steel 34CrNiMo6
- Untersuchungen des Schädigungsgrades von Polyethylenformstoffen als Werkstoffe von Heizöllagerbehältern nach einer Nutzungsdauer von über 30 Jahren
- Microstructure and mechanical properties of AZ31 Mg alloy produced by a new compound extrusion technique
- Failure analysis of a cracked Q125 casing for ultra-deep wells at the Tarim Oilfield
Artikel in diesem Heft
- Inhalt/Contents
- Contents
- Laudatio
- Professor Dr.-Ing. Harald Zenner: on the occasion of his eightieth birthday
- Fachbeiträge/Technical Contributions
- Fatigue life curve – A continuous Wöhler curve from LCF to VHCF
- On the accuracy of estimating fatigue notch factors
- Analytical strength assessments of austempered ductile iron components
- On the estimation of cyclic material properties – Part 1: Quality of known estimation methods
- On the estimation of cyclic material properties – Part 2: Introduction of a new estimation method
- Execution and evaluation of cyclic tests at constant load amplitudes – DIN 50100:2016
- Wear resistance of laser cladded Stellite 31 coating on AISI 316L steel
- Determination of the Johnson-Cook damage parameter D4 by Charpy impact testing
- Effect of residual Alclad on friction stir spot welds of AA2219 alloys
- Effect of cooling rate on microstructure, mechanical properties and residual stress of 7075 aluminum alloy
- Failure analysis of an adhesively joined composite pipe system under internal pressure
- Non-metallic inclusions and fatigue strength of steel 34CrNiMo6
- Untersuchungen des Schädigungsgrades von Polyethylenformstoffen als Werkstoffe von Heizöllagerbehältern nach einer Nutzungsdauer von über 30 Jahren
- Microstructure and mechanical properties of AZ31 Mg alloy produced by a new compound extrusion technique
- Failure analysis of a cracked Q125 casing for ultra-deep wells at the Tarim Oilfield