Startseite Technik Improved Stress Shielding on a Cementless Tibia Tray using Functionally Graded Material
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Improved Stress Shielding on a Cementless Tibia Tray using Functionally Graded Material

  • Hassan S. Hedia und Noha Fouda
Veröffentlicht/Copyright: 11. Dezember 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Aseptic loosening of the tibial component is a primary concern of total knee replacement (TKR), which may be caused by stress shielding in cancellous bone of tibia and may require subsequent revision surgery. There is no doubt that materials and design are important issues within general product development and even more in biomedical products. In this study, a 2D axisymmetric finite element model of the tibia and tibial prosthesis is designed to find the optimal functionally graded material (FGM) constituents as well as the optimal gradation direction. The results showed that the optimal design of a tibia tray material is represented by grading it vertically from hydroxyapatite at the end of stem tibia to collagen at the upper layers of the tibia plate. This new design is found to reduce stress shielding in cancellous epiphyseal and diaphyseal bone by 78 % and 68 %, respectively, compared to cementless titanium tibia tray. However, the interface shear stress in cancellous diapyseal bone is reduced by 24 % using FGM tibia tray, which will reduce the pain at the end of stem after the surgery. It is concluded that the new tibial design will increase the life of the knee prosthesis.

Kurzfassung

Die aseptische Lockerung der Schienbeinkomponente, das durch eine Spannungsabschirmung in der Spongiosa verursacht werden kann, stellt die Hauptschwierigkeit bei einem totalen Knieersatz dar und kann einen nachfolgenden chirurgischen Revisionseingriff erfordern. Zweifelsfrei stellen die Werkstoffe und das Design wichtige Faktoren bei der generellen Produktentwicklung dar, insbesondere bei biomedizinischen Produkten. In der diesem Beitrag zugrunde liegenden Studie wurde ein achsensymmetrisches 2D-Modell des Schienbeins und der Schienbeinprothese entwickelt, um die optimalen Bestandteile eines funktionsgradierten Werkstoffes (Functionally Graded Material (FGM)) sowie die optimale Graduierungsrichtung herauszufinden. Die Ergebnisse zeigten, dass das optimale Design eines Materials für die Schienbeinschale darin besteht, es vertikal von Hydroxyapatit am Ende des Schienbeinstammes zu Kollagen an den oberen Schichten der Schienbeinplatte zu graduieren. Es stellte sich heraus, dass dieses Design dazu führt, dass die Spannungen in der epiphysischen und diaphysischen Spongiosa entsprechend um 78 % und 68 % gegenüber einer zementlosen Schienbeinschale aus Titan reduziert werden. Allerdings wird die Scherspannung in der Grenzschicht in der diaphysischen Spongiosa unter Verwendung der FGM Schienbeinschale um 24 % reduziert, was den Schmerz am Ende des Schafts nach der Operation herabsetzt. Es wird gefolgert, dass das neue Schienbeindesign die Lebensdauer der Knieprothese verlängert.

References

1 M.Bahraminasab, A.Jahan: Material selection for femoral component of total knee replacement using comprehensive VIKOR, Materials and Design32 (2011), pp. 4471447710.1016/j.matdes.2011.03.046Suche in Google Scholar

2 S. M.Darwish, A.Al-Samhan: The effect of cement stiffness and tibia tray material on stresses developed in artificial knee, International Journal of Adhesion & Adhesives28 (2008), pp. 12012510.1016/j.ijadhadh.2007.05.003Suche in Google Scholar

3 A. G.Aua, V. J.Rasob, A. B.Ligginsb, A.Amirfazli: Contribution of loading conditions and material properties to stress shielding near the tibial component of total knee replacements, Journal of Biomechanics40 (2007), pp. 1410141610.1016/j.jbiomech.2006.05.020Suche in Google Scholar

4 M.Taylor, K. E.Tanner, M. A. R.Freeman: Finite element analysis of the implanted proximal tibia: A relationship between the initial cancellous bone stresses and implant migration, Journal of Biomechanics31 (1998), pp. 303310Suche in Google Scholar

5 S. N.Nambu, G.Lewis: Influences of the temporal nature of the applied load and the tibial baseplate material on the stress distribution in a three-dimensional model of the human knee joint containing a prosthetic replacement, Bio-Medical Materials and Engineering14 (2004), pp. 203217Suche in Google Scholar

6 D. L.Levine: The Effect of Material Stiffness on the Function of Cemented Tibial Trays: Ti-6Al-4V vs. Co-Cr Alloy, Technical Monograph 97-2100-05, Zimmer Inc., Warsaw, Ind. (1995)Suche in Google Scholar

7 A.Completo, P.Talaia, F.Fonseca, J. A.Simoes: Relationship of design features of stemmed tibial knee prosthesis with stress shielding and end-of-stem pain, Materials and Design30 (2009), pp. 1391139710.1016/j.matdes.2008.06.071Suche in Google Scholar

8 D. A.Saravanos, P. J.Mraz, D. T.Davy: Shape Optimization of Tibial Prosthesis Components, NASA Contractor Report191123 (1993)Suche in Google Scholar

9 J. H.Lonner, M.Klotz, C.Levitz, P. A.Lotke: Changes in bone density after cemented total knee arthroplasty-Influence of stem design, J. Arthroplasty16 (2001), No. 1, pp. 10711110.1054/arth.2001.16486Suche in Google Scholar

10 D. Y. R.Chong, U. N.Hansen, A. A.Amis: The influence of tibial prosthesis design features on stresses related to aseptic loosening and stress shielding, Journal of Mechanics in Medicine and Biology11 (2011), No. 1, pp. 557210.1142/S0219519410003666Suche in Google Scholar

11 M. J.Askew, J. L.Lewis: Analysis of model variables and fixation post length effects on stresses around a prosthesis in the proximal tibia, J. Biomech. Eng.103 (1981), pp. 23924510.1115/1.3138287Suche in Google Scholar

12 K.Murase, R. D.Crowninshield, D. R.Pedersen, T. S.Chang: An analysis of tibial component design in total knee arthroplasty, J. Biomech.16 (1983), No. 1, pp. 132210.1016/0021-9290(83)90042-8Suche in Google Scholar

13 G.Mallesh, S. J.Sanjay: Finite element modeling and analysis of prosthetic knee joint, International Journal of Emerging Technology and Advanced Engineering2 (2012), No. 8, pp. 264269Suche in Google Scholar

14 H. S.Hedia, M. A.Shabara, T. T.El Midany, N.Fouda: Improving the performance of the cementless metal-backed acetabular cup prostheses through functionally graded material, Proc. of the 8th International Conference on Production Engineering Design and Control PEDAC' 2004, Alexandria, Egypt (2004), pp. 113Suche in Google Scholar

15 H. S.Hedia, T. T.El Midany, M. A.Shabara, N.Fouda: Design optimization of cementless metal-backed cup prosthesis using the concept of functionally graded material, Biomedical Materials1 (2006), pp. 12713310.1088/1748-6041/1/3/006Suche in Google Scholar PubMed

16 H. S.Hedia, M. A.Shabara, T. T.El Midany, N.Fouda: A method of material optimization of cementless stem through functionally graded material, International Journal of Mechanics and Materials in Design1 (2004), pp. 32934610.1007/s10999-005-3307-4Suche in Google Scholar

17 H. S.Hedia, M. A.Shabara, T. T.El Midany, N.Fouda: Improved design of cementless hip stems using two-dimensional functionally graded materials, J. Biomed. Mater. Res. Part B: Appl. Biomater.79 B (2006), 424910.1002/jbm.b.30509Suche in Google Scholar

18 H. S.Hedia, N.Fouda: A new design of hip prosthesis coating using functionally graded material, Elasticity and Mechanical Properties, Materials Testing55 (2013), pp. 2331Suche in Google Scholar

19 H. S.Hedia: Design of functionally graded dental implant in the presence of cancellous bone, Journal of Biomedical Materials Research-Part B Applied Biomaterials75 (2005), pp. 748010.1002/jbm.b.30275Suche in Google Scholar

20 A.Sadollah, A.Bahraininejad, H.Eskandar, M.Hamdi: Optimum material gradient for functionally graded dental implant using particle swarm optimization, Advanced Material Research647 (2013), pp. 303610.4028/www.scientific.net/AMR.647.30Suche in Google Scholar

21 M.Kikuchi, S.Itoh, S.Ichinose, K.Shinomiya, J.Tanaka: Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in-vitro and its biological reaction in-vivo, Biomaterials22 (2001), pp. 1705171110.1016/S0142-9612(00)00305-7Suche in Google Scholar

22 S.Sotome, T.Uemura, M.Kikuchi, J.Chen, S.Itoh, J.Tanaka, T.Tateishi, K.Shinimiya: Synthesis and in-vivo evaluation of a novel hydroxyapatite/collagen-alginate as a bone filler and a drug delivery carrier of bone morphogenetic protein, Mater. Sci. Eng. C24 (2004), pp. 34134710.1016/j.msec.2003.12.003Suche in Google Scholar

23 L. J.Zang, X. S.Feng, H. G.Liu, D. J.Qian, L.Zang, X. L.Yu, F. Z.Cui: Hydroxyapatite/collagen composite materials formation in simulated body fluid environment, Materials Letters58 (2004), pp. 71972210.1016/j.matlet.2003.07.009Suche in Google Scholar

24 S.Itoh, T.Kawauchi, K.Koyama: Osteoconductive activity of a novel biomaterial, hydroxy-apatite/collagen composite, Proc. of the 46th Annual Meeting of the Orthopaedic Research Society, Orlando, Florida, USA (2000)Suche in Google Scholar

25 S.Itoh, M.Kikuchi, Y.Koyama, K.Takakuda, K.Shinomiya, J.Tanaka: Development of an artificial vertebral body using a novel biomaterial, hydroxyapatite/collagen composite, Biomaterials23 (2002), pp. 3919392610.1016/S0142-9612(02)00126-6Suche in Google Scholar

Published Online: 2013-12-11
Published in Print: 2013-11-15

© 2013, Carl Hanser Verlag, München

Heruntergeladen am 19.1.2026 von https://www.degruyterbrill.com/document/doi/10.3139/120.110507/html?lang=de
Button zum nach oben scrollen