Home Technology Effect of Ti Addition on the Microstructure and Properties of a High Speed Steel Roll
Article
Licensed
Unlicensed Requires Authentication

Effect of Ti Addition on the Microstructure and Properties of a High Speed Steel Roll

  • Cen Qihong , Jiang Zhiqiang and Fu Hanguang
Published/Copyright: December 11, 2013
Become an author with De Gruyter Brill

Abstract

In the present work, the effect of Ti addition on microstructure and properties of high speed steel (HSS) used for rolls was investigated utilizing optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy spectrum analysis. The results indicated that as-cast microstructure of the HSS roll is mainly composed of MC, M2C and M7C3 eutectic carbides and metallic matrix consishing of a mixture of martensite, austenite, and pearlite. The carbides are connected or placed next to each other to form a network along grain boundaries. The addition of 0.5 wt.-% Ti leads to a great change in the morphology, size and distribution of carbides. The carbide network tends to break, and all carbides are refined and distributed homogeneously in the matrix. After normalizing treatment at 1050 °C, the carbides in the Ti containing HSS roll transform into granular or nodular distribution. The mechanical properties, thermal fatigue, and wear resistance of Ti containing HSS roll are more excellent than that of the HSS roll without titanium.

Kurzfassung

In den diesem Beitrag zugrunde liegenden Arbeiten wurde die Auswirkung einer Ti-Zugabe auf die Mikrostruktur und die Eigenschaften eines Schnellarbeitsstahls, (high speed steel-HSS) für Walzen mittels Lichtmikroskopie, Rasterelektronenmikroskopie, Röntgendiffraktometrie und Spektralanalyse untersucht. Die Ergebnisse weisen darauf hin, dass das Gefüge der HSS-Walze vorwiegend aus den eutektischen Carbiden MC, M2C und M7C3 und metallischer Matrix besteht, die eine Mischung aus Martensit, Austenit und Perlit aufweist. Die Carbide sind verbunden oder nebeneinander platziert, sodass sie ein Netzwerk um die Korngrenzen bilden. Die Zugabe von 0,5 wt.- % Ti verursacht große Veränderungen der Morphologie, Größe und Verteilung der Carbide. Das Carbidnetzwerk neigt aufzubrechen und alle Carbide werden fein verteilt und homogen im Gefüge verteilt. Nach einer Normalisierung bei 1050 °C, gehen die Carbide in der Ti-haltigen Walze in eine körnige oder knotenartige Verteilung über. Die mechanischen Eigenschaften sowie der Widerstand gegen thermische Ermüdung und Verschleiß der Ti-haltigen Walze sind deutlich besser als die der Walze ohne Titan.

References

1 B.Abdelylah, Z.Abdelkader, S.Boualem, B. B.Belabbes, B.Benali: Hot compression and fracture toughness of HSS composed hot strip work rolls, J. Mater Sci.42 (2007), pp. 834840Search in Google Scholar

2 G. S.Wu, Y. T.Wang: Fracture analysis of high chromium cast iron roll on CSP mill, Adv. Mater. Res.548 (2012), pp. 53854310.4028/www.scientific.net/AMR.548.538Search in Google Scholar

3 Y.Cao, J. T.Zhang, W.Wang, X. H.Liu: Microstructure and thermal fatigue properties of high chromium cast steel roll, J. Northeastern University, 32 (2011), pp. 14141417Search in Google Scholar

4 M.Andersson, R.Finnstrom, T.Nylen: Introduction of enhanced indefinite chill and high speed steel rolls in European hot strip mills, Iron and Steel Making31 (2004), pp. 38338810.1179/030192304225018208Search in Google Scholar

5 X.Li, Z.Du, H.Fu, Z.Feng, H.Zhao: Experimental investigation on heat treatment of a high-speed steel for hot rolling roll mill, Materialwiss. Werkstofftech.41 (2010), pp. 17017610.1002/mawe.201000577Search in Google Scholar

6 M.Pellizzari, D.Cescato, G.Straffelini, R.Valentini, A.Solina: Study of heat treatment of centrifugal cast high speed steels for hot rolls, Metallurgia Italiana100 (2008), No. 4, pp. 1723Search in Google Scholar

7 T.Zhang, Q.Wang, X.Song, H.Fu: Effect of electromagnetic centrifugal casting on solidification microstructure of cast high speed steel roll, Materialwiss. Werkstofftech.42 (2011), pp. 55756110.1002/mawe.201100633Search in Google Scholar

8 D. J.Ha, H. Y.Sung, J.Park, S.Lee: Effects of alloying elements on microstructure, hardness, wear resistance, and surface roughness of centrifugally cast high-speed steel rolls, Metall. Mater. Trans. A.40 (2009), pp. 2568257710.1007/s11661-009-0006-zSearch in Google Scholar

9 Z. Q.Jiang, X. L.Feng, H. G.Fu: Investigations on the crack of centrifugal casting high speed steel rolls, Adv. Mater. Res.129–131 (2010), pp. 495499Search in Google Scholar

10 M.Hashimoto, T.Oda, K.Hokimoto, T.Kawakami, R.Kurahashi: Development and application of high-speed tool steel rolls in hot strip rolling, Nippon Steel Technical Report. 66 (1995), pp. 8290Search in Google Scholar

11 A.Bedolla-Jacuinde, S. L.Aguilar, C.Maldonado: Eutectic modification in a low-chromium white cast iron by a mixture of titanium, rare earths, and bismuth: Part II – Effect on the wear behaviour, J. Mater. Eng. Perform.14 (2005), pp. 301306Search in Google Scholar

12 X. L.Feng, Z. Q.Jiang, Z. Y.Hu: Influences of RE-Ti composite modification on the structure and properties of W6Mo5Cr4V2 alloy, Adv. Mater. Res.33–37 (2008), pp. 455458Search in Google Scholar

13 H. T.Wang, J. W.Tan, L. P.Huang: Effects and mechanism of titanium modification on structures of cast steel ZG270-500, J. Wuhan University of Technology27 (2012), pp. 63463910.1007/s11595-012-0518-zSearch in Google Scholar

14 H. G.Fu, Q.Xiao, J. C.Kuang, Z. Q.Jiang, J. D.Xing: Effect of rare earth and titanium additions on the microstructures and properties of low carbon Fe-B cast steel, Mater. Sci. Eng. A466 (2007), pp. 16016510.1016/j.msea.2007.02.032Search in Google Scholar

15 J. D.Bressan, R. A.Schopf: Abrasive Wear Resistance of Tool Steels Evaluated by the Pin-on-Disc Testing, AIP Conference Proceedings1353 (2011), pp. 1753175810.1063/1.3589769Search in Google Scholar

16 J.Rendo´n, M.Olsson: Abrasive wear resistance of some commercial abrasion resistant steels evaluated by laboratory test methods, Wear267 (2009), pp. 20552061Search in Google Scholar

17 J. D.Xing, W. H.Lu, X. T.Wang, K. C.Ludemam (Ed.): Proceedings of International Conference on Wear of Materials, Reston, ASME, New York, USA (1983), p. 45Search in Google Scholar

18 H. M.Wang, Q.Zhang, H. S.Shao: Two-body abrasive wear behaviour of austempered steel, Lin, F. Y. (Ed.): Wear Theory and Anti-Wear Technology, Science Press, Beijing, P. R. China (1993), pp. 162165Search in Google Scholar

19 G.Hoyle: High Speed Steels, Butterworth & Co. Ltd., London, UK (1988) 10.1179/095066064790152631Search in Google Scholar

20 M. M.Arikan, H.Cimenoglu, E. S.Kayali: The effect of titanium on the abrasion resistance of 15Cr–3Mo white cast iron, Wear247 (2001), pp. 231235Search in Google Scholar

21 S.Kheirandish, S.Mirdamadi, Y. H. K.Kharrazi: Effect of titanium on cast structure of high speed steel, Mater. Sci. Technol.14 (1998), pp. 31231610.1179/026708398790301368Search in Google Scholar

22 A. S.Chaus: Modifying cast tungsten-molybdenum high-speed steels with niobium, zirconium, and titanium, Met. Sci. Heat Treat.47 (2005), pp. 536110.1007/s11041-005-0031-5Search in Google Scholar

23 Y. J.Li, Q. C.Jiang, Y. G.Zhao, Z. M.He: Influence of Ti on MC carbide in M2 steel, J. Mater. Sci. Technol.13 (1997), pp. 471474Search in Google Scholar

24 L. M.Chang, J. H.Liu, R. J.Zhang, J. D.Wang: Effect of RE modification and heat treatment on impact fatigue property of a wear resistant white cast iron, J. Rare Earths22 (2004), pp. 537541Search in Google Scholar

Published Online: 2013-12-11
Published in Print: 2013-11-15

© 2013, Carl Hanser Verlag, München

Downloaded on 19.1.2026 from https://www.degruyterbrill.com/document/doi/10.3139/120.110512/html
Scroll to top button