Home Technology Failure Analysis of a Hardened Steel Clamping Head
Article
Licensed
Unlicensed Requires Authentication

Failure Analysis of a Hardened Steel Clamping Head

  • Ş. Hakan Atapek , Muzaffer Zeren and Fulya Kahrıman
Published/Copyright: December 11, 2013
Become an author with De Gruyter Brill

Abstract

In this study, fracture analysis of a eutectoid steel used as material for a clamping head and which failed in service was carried out to investigate the effect of heat treatment and also the microstructural features on the failure. The fracture surface was initially examined by scanning electron microscopy to determine the fracture type and possible paths for crack propagation. In the next step, the cross section of the steel was prepared by metallographical techniques and the matrix phases were determined using light microscope in etched condition. The steel surface exhibited a mixed fracture consisting of typical intergranular and quasi-cleavage fracture. The matrix showed segregation regions as band structure and included retained austenite in addition to martensite. Furthermore, several internal cracks were observed in the matrix due to the quenching effect, and the martensitic regions were very effective on the formation of intergranular fracture. Retained austenite possibly plays an important role in forming quasi-cleavage fracture during service loading.

Kurzfassung

In der diesem Beitrag zugrunde liegenden Studie wurde eine Bruchanalyse eines eutektioden Stahles durchgeführt, der für einen Einspannkopf verwendet wurde und im Betrieb versagte, um die Auswirkungen der Wärmebehandlung sowie der mikrostrukturellen Besonderheiten auf den Schaden zu untersuchen. Die Bruchoberfläche wurde zunächst mittels REM untersucht, um den Bruchtyp und potentielle Pfade des Rissverlaufes zu ermitteln. Im nächsten Schritt wurde ein Querschliff metallographisch präpariert und die Phasen des Gefüges mittels Lichtmikroskop im geätzten Zustand bestimmt. Die Oberfläche wies einen Mischbruch, bestehend aus typischen interkristallinen und Quasispaltbruchanteilen auf. Das Gefüge zeigte Segregationsbereiche als Bandstruktur und beinhaltete zusätzlich zum Martensit auch Restaustenit. Darüber hinaus wurden mehrere interne Risse im Gefüge aufgrund des Abschreckeffektes beobachtet und die martensitischen Regionen waren bei der Ausbildung des interkristallinen Bruches sehr effektiv. Restaustenit hat möglicherweise eine größere Bedeutung bei der Ausbildung von Quasispaltbrüchen während der Beanspruchung im Betrieb.

References

1 ASM Handbook, Vol. 1, Properties and Selection Irons, Steels, and High-Performance Alloys, ASM International, Materials Park, Ohio, USA (1993)Search in Google Scholar

2 ASM Handbook, Vol. 4, Heat Treating, ASM International, Materials Park, Ohio, USA (1991)Search in Google Scholar

3 L. C. F.Canale, R. A.Mesquita, G. E.Totten: Failure Analysis of Heat Treated Steel Components, ASM International, Materials Park, Ohio, USA (2008)10.31399/asm.tb.fahtsc.9781627082846Search in Google Scholar

4 J. D.Verhoeven: Fundamentals of Physical Metallurgy, John Wiley & Sons, NY (1975)Search in Google Scholar

5 R. W. K.Honeycombe: Steels – Microstructure and Properties, Metallurgy and Materials Science Series, Edward Arnold, London, UK (1981)Search in Google Scholar

6 G. E.Totten: Steel Heat Treatment Handbook, CRC Press, Boca Raton (2007)10.1201/9781482293029Search in Google Scholar

7 H. K. D. H.Bhadeshia: Martensite and bainite in steels: Transformation mechanism & mechanical properties, Journal de PhysiqueIV (1997), pp. 36737610.1051/jp4:1997558Search in Google Scholar

8 H. K. D. H.Bhadeshia: Bainite in Steels, Cambridge University Press, UK (2001) 10.1007/BF02656561Search in Google Scholar

9 S. A.Bashu, K.Singh, M. S.Rawat: Effect of heat treatment on mechanical properties and fracture behaviour of a 12CrMoV steel, Materials Science and Engineering A127 (1990), pp. 71510.1016/0921-5093(90)90184-5Search in Google Scholar

10 Ş. H.Atapek, S.Gümüş, Ş.Polat: Effect of matrix toughness and grain morphology on fracture of steels, Metal Science and Heat Treatment54 (2013), pp. 64865310.1007/s11041-013-9565-0Search in Google Scholar

11 B.Lou, B. L.Averbach: The effects of heat treatment on fracture toughness and fatigue crack growth rates in 440C and BG42 steels, Metallurgical Transactions A14 (1983), pp. 1899190610.1007/BF02645561Search in Google Scholar

12 J. J.Lewandowski, A. W.Thompson: Microstructural effects on the cleavage fracture stress of fully pearlitic eutectoid steel, Metallurgical and Materials Transactions A17 (1986), pp. 1769178610.1007/BF02817275Search in Google Scholar

13 D. M.Li, F.Ye: Microstructural effect on cleavage fracture behaviour of pearlitic eutectoid steel, Materials Chemistry and Physics26 (1990), pp. 36737310.1016/0254-0584(90)90024-5Search in Google Scholar

14 W. J.Yang, B. S.Lee, Y. J.Oh, M. Y.Huh, J. H.Hong: Microstructural parameters governing cleavage fracture behaviours in the ductile-brittle transition region in reactor pressure vessel steels, Materials Science and Engineering A379 (2004), pp. 172610.1016/j.msea.2003.10.289Search in Google Scholar

15 O. H.Ibrahim, E. S.Elshazly: Microstructural effects on fracture behaviour of ferritic and martensitic structural steels, Journal of Materials Engineering and Performance22 (2013), pp. 58458910.1007/s11665-012-0266-4Search in Google Scholar

16 Y.Tomita: Effect of microstructure on plane-strain fracture toughness of AISI 4340 steel, Metallurgical Transactions A19 (1988), pp. 2513252110.1007/BF02645479Search in Google Scholar

17 W. M.Garrison, A. L.Wojcieszynski: A discussion of the effect of inclusion volume fraction on the toughness of steel, Materials Science and Engineering A464 (2007), pp. 32132910.1016/j.msea.2007.02.015Search in Google Scholar

18 C.Lerchbacher, S.Zinner, H.Leitner: Direct or indirect influence of type retained austenite decomposition during tempering on the toughness of a hot-work tool steel, Materials Science and Engineering A564 (2013), pp. 16316810.1016/j.msea.2012.11.105Search in Google Scholar

19 X. C.Xiong, B.Chen, M. X.Huang, J. F.Wang, L.Wang: The effect of morphology on the stability of retained austenite in a quenched and partitioned steel, Scripta Materialia68 (2013), pp. 32132410.1016/j.scriptamat.2012.11.003Search in Google Scholar

20 A.Kokosza, J.Pacyna: Retained autenite in the cracking process of 70MnCrMoV9-2-4-2 tempered steel, Journal of Achievements in Materials and Manufacturing Engineering29 (2008), pp. 3946Search in Google Scholar

21 N.Perez: Fracture Mechanics, Kluwer Academic Publishers, Boston, USA (2004)Search in Google Scholar

22 G. E.Dieter: Mechanical Metallurgy, McGraw-Hill Book Company, USA (1988) 10.5962/bhl.title.35895Search in Google Scholar

23 M.Meyers, K.Chawla: Mechanical Behaviour of Materials, Cambridge University Press, UK (2009) 10.1017/CBO9780511810947Search in Google Scholar

24 H. M.Tawancy, A.Ul-Hamid, N. M.Abbas: Practical Engineering Failure Analysis, Marcel Derker Inc., USA (2004)10.1201/9780203026298Search in Google Scholar

25 ASM Handbook Vol 12: Fractography, ASM International, Materials Park, Ohio, USA (1991)Search in Google Scholar

26 Z. C.Liu: Intergranular fracture of as-quenched martensite in high carbon steels, Acta Metallurgica Sinica3 (1990), pp. 5864Search in Google Scholar

27 P. R.Rios, J. R. C.Guimarães: Microstructural path analysis of martensite burst, Journal of Materials Research13 (2010), pp. 11912410.1590/S1516-14392010000100023Search in Google Scholar

Published Online: 2013-12-11
Published in Print: 2013-11-15

© 2013, Carl Hanser Verlag, München

Downloaded on 19.1.2026 from https://www.degruyterbrill.com/document/doi/10.3139/120.110506/html
Scroll to top button