Improvement of Surface Properties of Nickel-Based Superalloys Grade Haynes 214 by Pack Aluminizing
-
Pasuta Keeratimas
, Patama Visuttipitukul and Panyawat Wangyao
Abstract
This research studied mechanical properties and oxidation resistance of Haynes 214 after pack aluminizing. The Haynes 214 samples were heat treated at various temperatures (973 K, 1073 K and 1173 K) for 1, 1.25, 4 and 6.25 hours, respectively. After aluminizing, there were two layers at the surface: the inner layer (Ni2Al3) located adjacent to Haynes 214 substrate and the outer layer (Ni2Al3 and NiAl3) at the surface. After aluminizing, surface hardness significantly increases from about 250 HV of substrate to more than 570 HV. With increasing hardness, wear resistance of aluminized samples can also be improved as can be seen from decreasing the specific wear rate from 2.24 × 10−6 g N−1m−1 to 7.6 × 10−7 g N−1m−1 after aluminizing. Cyclic oxidation tests of Haynes 214 with and without aluminizing show that both of them have good oxidation resistance due to slow growth rate of oxide film.
Kurzfassung
In den diesem Beitrag zugrundeliegenden Forschungsarbeiten wurden die mechanischen Eigenschaften und der Oxidationswiderstand der Legierung Haynes 214 nach dem Pack-Aluminisieren untersucht. Die Proben aus Haynes 214 wurden bei verschiedenen Temperaturen (973 K, 1073 K und 1173 K) über 1, 1.25, 4 und 6.25 Stunden wärmebehandelt. Nach dem Aluminisieren entstanden zwei Lagen auf der Oberfläche: Eine innere Lage (Ni2Al3) auf dem Haynes 214 Substrat und eine äußere Lage (Ni2Al3 and NiAl3) an der Oberfläche. Nach dem Aluminisieren stieg die Härte signifikant von 250 HV des Substrats auf mehr als 570 HV an. Mit steigender Härte konnte auch der Verschleißwiderstand der aluminisierten Proben verbessert werden, was sich anhand der spezifischen Abtragsrate von 2,24 × 10−6 g N−1m−1 auf 7,6 × 10−7 g N−1m−1 nach dem Aluminisieren zeigt. Zyklische Oxidationsversuche mit der Legierung Haynes 214 mit sowie ohne Aluminisieren zeigen anhand der geringen Wachstumsrate der Oxidschicht, dass beide einen guten Oxidationswiderstand aufweisen.
References
1 http://www.haynesintl.com/pdf/h3008.pdfSearch in Google Scholar
2 J. W.Lee, Y. C.Kuo: A study on the microstructure and cyclic oxidation behaviour of the pack aluminized Hastelloy X at 1100° C, Surface and Coatings Technology201 (2006), pp. 3867–3871Search in Google Scholar
3 B.M.Warnes, D.C.Punola: Clean diffuse coating by chemical vapor deposition, in: Surface and Coatings Technology94–95 (1997), pp. 1–610.1016/S0257-8972(97)00467-2Search in Google Scholar
4 M.J.Pomeroy: Coatings for gas turbine materials and long term stability issues, Materials and Design26 (2005), pp. 223–23110.1016/j.matdes.2004.02.005Search in Google Scholar
5 K.Suresh, S.Yugeswaran, K.P.Rao, A.Kobayashi, P.W.Shum: Sliding wear behaviour of gas tunnel type plasma sprayed Ni-based metallic glass composite coatings, Vacuum88 (2013), pp. 114–11710.1016/j.vacuum.2012.02.010Search in Google Scholar
6 R.A.Outlaw, S.Rezaie-Serej, W.P.Allen, R.M.Latanision: Desulfurization of Ni-based superalloys by combined heating and glow discharge, Scripta Materialia34 (1996), pp. 1315–1321Search in Google Scholar
7 A.A.Tchizhik, A.I.Rybnikov, I.S.Malashenko, S.A.Leontiev, A.S.Osyka: The effect of EB PVD coatings on structure and properties of nickel-based superalloy for gas turbine blades, Surface and Coatings Technology78 (1996), pp. 113–12310.1016/0257-8972(94)02398-0Search in Google Scholar
8 H. Y.Wang, D. W.Zuo, Y. L.Sun, F.Xu, D.Zhang: Microstructure of nanometer Al2O3 dispersion strengthened Ni-based high-temperature protective coatings by laser cladding, in: Transactions of Nonferrous Metals Society of China19 (2009), pp. 586–591Search in Google Scholar
9 J.Muller, M.Schierling, E.Zimmermann, D.Neuschutz: Chemical vapor deposition of smooth α-Al2O3 films on nickel base superalloys as diffusion barriers, Surface and Coatings Technology120–121 (1999), pp. 16–21Search in Google Scholar
10 L.Tong, Y.Dengzun, Z.Chungen: Low-temperature Formation of Aluminide Coatings on Ni-based Superalloys by Pack Cementation Process, Chinese Journal of Aeronautics23 (2010), pp. 381–38510.1016/S1000-9361(09)60231-4Search in Google Scholar
11 P.Visuttipitukul, N.Limvanutpong, N.Yongvanich, P.Srichroenchai, P.Wangyao: Aluminizing of high purity nickel by powder liquid coating, Chiang Mai Journal of Science36 (2009), pp. 331–339Search in Google Scholar
12 P.Visuttipitukul, N.Limvanutpong, P.Wangyao: Aluminizing of nickel-based superalloys grade in 738 by powder liquid coating, Materials Transactions51 (2010), pp. 982–98710.2320/matertrans.M2009382Search in Google Scholar
13 P.Visuttipitukul, S.Chansaksoong, P.Wangyao: Coating of nickel aluminide by pack cementation to improve oxidation resistance of nickel-based superalloy grade in 738, High Temperature Materials and Processes28 (2009), pp. 401–406Search in Google Scholar
14 M.J.Donachie, S.J.Donachie: Superalloys – A Technical Guide, ASM International, Materials Park, OH, USA (2002)10.31399/asm.tb.stg2.9781627082679Search in Google Scholar
15 C.Houngninou, S.Chevalier, J.P.Larpin: Synthesis and characterization of pack cemented aluminide coatings on metals, Applied Surface Science236 (2004), pp. 256–269Search in Google Scholar
16 G.W.Goward: Progress in coatings for gas turbine airfoils, Surface and Coatings Technology108–109 (1998), pp. 73–7910.1016/S0257-8972(98)00667-7Search in Google Scholar
17 A.M.Hodge, D.C.Dunand: Synthesis of nickel-aluminide foams by pack-aluminization of nickel foams, Intermetallics9 (2001), pp. 581–58910.1016/S0966-9795(01)00047-4Search in Google Scholar
18 C.Y.Bai, Y.J.Luo, C.H.Koo: Improvement of high temperature oxidation and corrosion resistance of superalloy IN-738LC by pack cementation, Surface and Coatings Technology183 (2004), pp. 74–8810.1016/j.surfcoat.2003.10.011Search in Google Scholar
19 L.Levin, A.Ginzburg, L.Klinger, T.Werber, A.Katsman, P.Schaaf: Controlled Formation of surface layers by pack aluminization, Surface and Coatings Technology106 (1998), pp. 209–21310.1016/S0257-8972(98)00529-5Search in Google Scholar
20 J.E.Schillbe: Substrate alloy element diffusion in thermal barrier coatings, in: Surface and Coatings Technology133–134 (2000), pp. 35–3910.1016/S0257-8972(00)00870-7Search in Google Scholar
21 V.G.Shmorgun, Yu. P.Trykov, O.V.Slautin, V.V.Metelkin, A.I.Bogdanov: The Kinetics of Diffusion Process in the Nickel-Aluminum Composition, Russian Journal of Non-Ferrous Metals50 (2009), pp. 286–28910.3103/S1067821209030195Search in Google Scholar
22 F.M.d'Heurle, R.Ghez: Reactive diffusion in a prototype system: Nickel-aluminum I: Non-constant diffusion coefficient, Thin Solid Films215 (1992), pp. 19–25Search in Google Scholar
23 A.J.Hickl, R.W.Heckel: Kinetics of Phase Layer Growth During Aluminide Coating of Nickel, Metallurgical Transaction A6 (1975), pp. 431–44010.1007/BF02658400Search in Google Scholar
24 K.Fujiwara, Z.Horita: Measurement of intrinsic diffusion coefficients of Al and Ni in Ni3Al using Ni/NiAl diffusion couples, Acta Materialia50 (2002), pp. 1571–1579Search in Google Scholar
25 J.M.Brossard, B.Panicaud, J.Balmain, G.Bonnet: Modeling of aluminized coating growth on nickel, Acta Materialia55 (2007), pp. 6586–659510.1016/j.actamat.2007.08.025Search in Google Scholar
© 2013, Carl Hanser Verlag, München
Articles in the same Issue
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Effects of Copper (Cu), Indium (In), Tin (Sn), Antimony (Sb) and Zinc (Zn) in Sterling Silver Alloys on Mechanical Properties Improvement
- Improvement of Surface Properties of Nickel-Based Superalloys Grade Haynes 214 by Pack Aluminizing
- Ein Sensorkonzept zur In-situ-Rissüberwachung in plattenartigen Strukturen
- Failure Analysis of a Hardened Steel Clamping Head
- Improved Stress Shielding on a Cementless Tibia Tray using Functionally Graded Material
- Influence of Plasma Carbonitriding and Nitriding on Phase Composition and Mechanical Properties of a X 12 CrNi 18 10 Ti Stainless Steel Surface
- Schallfeldmodellierung von Ultraschall-Transversalwellen-Prüfköpfen
- Microstructural Effects on Fatigue Behaviour of a Forged Medium Carbon Microalloyed Steel
- Effect of Ti Addition on the Microstructure and Properties of a High Speed Steel Roll
- The Effect of Nanocomposite Coating with Different Concentrations on Fatigue Life of Carbon Steel AISI 1045
- Microstructural Investigations of Electron Beam Welded Joints of Continuous Saw Blades
- Analysis on Dynamic Compaction and Mechanical Behavior of Reclamation Foundation Using Soil Tests
- Vibration response of cement structures under conditions of impact loads
- Vorschau/Preview
- Vorschau
Articles in the same Issue
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Effects of Copper (Cu), Indium (In), Tin (Sn), Antimony (Sb) and Zinc (Zn) in Sterling Silver Alloys on Mechanical Properties Improvement
- Improvement of Surface Properties of Nickel-Based Superalloys Grade Haynes 214 by Pack Aluminizing
- Ein Sensorkonzept zur In-situ-Rissüberwachung in plattenartigen Strukturen
- Failure Analysis of a Hardened Steel Clamping Head
- Improved Stress Shielding on a Cementless Tibia Tray using Functionally Graded Material
- Influence of Plasma Carbonitriding and Nitriding on Phase Composition and Mechanical Properties of a X 12 CrNi 18 10 Ti Stainless Steel Surface
- Schallfeldmodellierung von Ultraschall-Transversalwellen-Prüfköpfen
- Microstructural Effects on Fatigue Behaviour of a Forged Medium Carbon Microalloyed Steel
- Effect of Ti Addition on the Microstructure and Properties of a High Speed Steel Roll
- The Effect of Nanocomposite Coating with Different Concentrations on Fatigue Life of Carbon Steel AISI 1045
- Microstructural Investigations of Electron Beam Welded Joints of Continuous Saw Blades
- Analysis on Dynamic Compaction and Mechanical Behavior of Reclamation Foundation Using Soil Tests
- Vibration response of cement structures under conditions of impact loads
- Vorschau/Preview
- Vorschau