Home Technology Improvement of Surface Properties of Nickel-Based Superalloys Grade Haynes 214 by Pack Aluminizing
Article
Licensed
Unlicensed Requires Authentication

Improvement of Surface Properties of Nickel-Based Superalloys Grade Haynes 214 by Pack Aluminizing

  • Pasuta Keeratimas , Patama Visuttipitukul and Panyawat Wangyao
Published/Copyright: December 11, 2013
Become an author with De Gruyter Brill

Abstract

This research studied mechanical properties and oxidation resistance of Haynes 214 after pack aluminizing. The Haynes 214 samples were heat treated at various temperatures (973 K, 1073 K and 1173 K) for 1, 1.25, 4 and 6.25 hours, respectively. After aluminizing, there were two layers at the surface: the inner layer (Ni2Al3) located adjacent to Haynes 214 substrate and the outer layer (Ni2Al3 and NiAl3) at the surface. After aluminizing, surface hardness significantly increases from about 250 HV of substrate to more than 570 HV. With increasing hardness, wear resistance of aluminized samples can also be improved as can be seen from decreasing the specific wear rate from 2.24 × 10−6 g N−1m−1 to 7.6 × 10−7 g N−1m−1 after aluminizing. Cyclic oxidation tests of Haynes 214 with and without aluminizing show that both of them have good oxidation resistance due to slow growth rate of oxide film.

Kurzfassung

In den diesem Beitrag zugrundeliegenden Forschungsarbeiten wurden die mechanischen Eigenschaften und der Oxidationswiderstand der Legierung Haynes 214 nach dem Pack-Aluminisieren untersucht. Die Proben aus Haynes 214 wurden bei verschiedenen Temperaturen (973 K, 1073 K und 1173 K) über 1, 1.25, 4 und 6.25 Stunden wärmebehandelt. Nach dem Aluminisieren entstanden zwei Lagen auf der Oberfläche: Eine innere Lage (Ni2Al3) auf dem Haynes 214 Substrat und eine äußere Lage (Ni2Al3 and NiAl3) an der Oberfläche. Nach dem Aluminisieren stieg die Härte signifikant von 250 HV des Substrats auf mehr als 570 HV an. Mit steigender Härte konnte auch der Verschleißwiderstand der aluminisierten Proben verbessert werden, was sich anhand der spezifischen Abtragsrate von 2,24 × 10−6 g N−1m−1 auf 7,6 × 10−7 g N−1m−1 nach dem Aluminisieren zeigt. Zyklische Oxidationsversuche mit der Legierung Haynes 214 mit sowie ohne Aluminisieren zeigen anhand der geringen Wachstumsrate der Oxidschicht, dass beide einen guten Oxidationswiderstand aufweisen.

References

1 http://www.haynesintl.com/pdf/h3008.pdfSearch in Google Scholar

2 J. W.Lee, Y. C.Kuo: A study on the microstructure and cyclic oxidation behaviour of the pack aluminized Hastelloy X at 1100° C, Surface and Coatings Technology201 (2006), pp. 38673871Search in Google Scholar

3 B.M.Warnes, D.C.Punola: Clean diffuse coating by chemical vapor deposition, in: Surface and Coatings Technology94–95 (1997), pp. 1610.1016/S0257-8972(97)00467-2Search in Google Scholar

4 M.J.Pomeroy: Coatings for gas turbine materials and long term stability issues, Materials and Design26 (2005), pp. 22323110.1016/j.matdes.2004.02.005Search in Google Scholar

5 K.Suresh, S.Yugeswaran, K.P.Rao, A.Kobayashi, P.W.Shum: Sliding wear behaviour of gas tunnel type plasma sprayed Ni-based metallic glass composite coatings, Vacuum88 (2013), pp. 11411710.1016/j.vacuum.2012.02.010Search in Google Scholar

6 R.A.Outlaw, S.Rezaie-Serej, W.P.Allen, R.M.Latanision: Desulfurization of Ni-based superalloys by combined heating and glow discharge, Scripta Materialia34 (1996), pp. 13151321Search in Google Scholar

7 A.A.Tchizhik, A.I.Rybnikov, I.S.Malashenko, S.A.Leontiev, A.S.Osyka: The effect of EB PVD coatings on structure and properties of nickel-based superalloy for gas turbine blades, Surface and Coatings Technology78 (1996), pp. 11312310.1016/0257-8972(94)02398-0Search in Google Scholar

8 H. Y.Wang, D. W.Zuo, Y. L.Sun, F.Xu, D.Zhang: Microstructure of nanometer Al2O3 dispersion strengthened Ni-based high-temperature protective coatings by laser cladding, in: Transactions of Nonferrous Metals Society of China19 (2009), pp. 586591Search in Google Scholar

9 J.Muller, M.Schierling, E.Zimmermann, D.Neuschutz: Chemical vapor deposition of smooth α-Al2O3 films on nickel base superalloys as diffusion barriers, Surface and Coatings Technology120–121 (1999), pp. 1621Search in Google Scholar

10 L.Tong, Y.Dengzun, Z.Chungen: Low-temperature Formation of Aluminide Coatings on Ni-based Superalloys by Pack Cementation Process, Chinese Journal of Aeronautics23 (2010), pp. 38138510.1016/S1000-9361(09)60231-4Search in Google Scholar

11 P.Visuttipitukul, N.Limvanutpong, N.Yongvanich, P.Srichroenchai, P.Wangyao: Aluminizing of high purity nickel by powder liquid coating, Chiang Mai Journal of Science36 (2009), pp. 331339Search in Google Scholar

12 P.Visuttipitukul, N.Limvanutpong, P.Wangyao: Aluminizing of nickel-based superalloys grade in 738 by powder liquid coating, Materials Transactions51 (2010), pp. 98298710.2320/matertrans.M2009382Search in Google Scholar

13 P.Visuttipitukul, S.Chansaksoong, P.Wangyao: Coating of nickel aluminide by pack cementation to improve oxidation resistance of nickel-based superalloy grade in 738, High Temperature Materials and Processes28 (2009), pp. 401406Search in Google Scholar

14 M.J.Donachie, S.J.Donachie: Superalloys – A Technical Guide, ASM International, Materials Park, OH, USA (2002)10.31399/asm.tb.stg2.9781627082679Search in Google Scholar

15 C.Houngninou, S.Chevalier, J.P.Larpin: Synthesis and characterization of pack cemented aluminide coatings on metals, Applied Surface Science236 (2004), pp. 256269Search in Google Scholar

16 G.W.Goward: Progress in coatings for gas turbine airfoils, Surface and Coatings Technology108–109 (1998), pp. 737910.1016/S0257-8972(98)00667-7Search in Google Scholar

17 A.M.Hodge, D.C.Dunand: Synthesis of nickel-aluminide foams by pack-aluminization of nickel foams, Intermetallics9 (2001), pp. 58158910.1016/S0966-9795(01)00047-4Search in Google Scholar

18 C.Y.Bai, Y.J.Luo, C.H.Koo: Improvement of high temperature oxidation and corrosion resistance of superalloy IN-738LC by pack cementation, Surface and Coatings Technology183 (2004), pp. 748810.1016/j.surfcoat.2003.10.011Search in Google Scholar

19 L.Levin, A.Ginzburg, L.Klinger, T.Werber, A.Katsman, P.Schaaf: Controlled Formation of surface layers by pack aluminization, Surface and Coatings Technology106 (1998), pp. 20921310.1016/S0257-8972(98)00529-5Search in Google Scholar

20 J.E.Schillbe: Substrate alloy element diffusion in thermal barrier coatings, in: Surface and Coatings Technology133–134 (2000), pp. 353910.1016/S0257-8972(00)00870-7Search in Google Scholar

21 V.G.Shmorgun, Yu. P.Trykov, O.V.Slautin, V.V.Metelkin, A.I.Bogdanov: The Kinetics of Diffusion Process in the Nickel-Aluminum Composition, Russian Journal of Non-Ferrous Metals50 (2009), pp. 28628910.3103/S1067821209030195Search in Google Scholar

22 F.M.d'Heurle, R.Ghez: Reactive diffusion in a prototype system: Nickel-aluminum I: Non-constant diffusion coefficient, Thin Solid Films215 (1992), pp. 1925Search in Google Scholar

23 A.J.Hickl, R.W.Heckel: Kinetics of Phase Layer Growth During Aluminide Coating of Nickel, Metallurgical Transaction A6 (1975), pp. 43144010.1007/BF02658400Search in Google Scholar

24 K.Fujiwara, Z.Horita: Measurement of intrinsic diffusion coefficients of Al and Ni in Ni3Al using Ni/NiAl diffusion couples, Acta Materialia50 (2002), pp. 15711579Search in Google Scholar

25 J.M.Brossard, B.Panicaud, J.Balmain, G.Bonnet: Modeling of aluminized coating growth on nickel, Acta Materialia55 (2007), pp. 6586659510.1016/j.actamat.2007.08.025Search in Google Scholar

Published Online: 2013-12-11
Published in Print: 2013-11-15

© 2013, Carl Hanser Verlag, München

Downloaded on 19.1.2026 from https://www.degruyterbrill.com/document/doi/10.3139/120.110515/html
Scroll to top button