Startseite Surface Characterization of Textiles for Optimization of Functional Polymeric Nano-Capsule Attachment
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Surface Characterization of Textiles for Optimization of Functional Polymeric Nano-Capsule Attachment

  • Wazir Akbar und G. Bahar Basim
Veröffentlicht/Copyright: 1. Oktober 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Surface properties of textiles play an essential role in their functionalization with micro/nanometer-sized polymeric capsules containing active agents that can provide controlled release. The attached capsules provide additional functionalities such as deodorizing, anti-microbial, or insect repellant properties. The efficiency of capsule attachment depends on the interaction between the selected textile material and the type of capsules. In this study, surface characteristics of the textiles were modified systematically to enhance the attachment of polyethyleneglycol based polymeric capsules. In the first phase of textile selection, four different textile materials, composed of 100% single fiber, were analyzed. Among the analyzed textile samples, cotton and polyester blends were investigated in detail due to their higher hydrophobicity, less negative zeta potential after treatment with finishing solution and broad applicability in sports outfits. In the second phase, statistical design of experiment (DoE) approach was used to have a deeper understanding of the processing factors such as the silicon (hydrophobic component) concentration in the finishing solution and the cotton/polyester blend ratio. An optimal textile was designed based on maximizing the capsule attachment on the cotton fibers woven on top and polyester at the bottom for providing strength and ease of ironing. The selected blend, treated with the required silicon concentration in the finishing solution, retained the highest amount of polymeric capsules containing eucalyptus oil for tick/insect repellency.

Kurzfassung

Die Oberflächeneigenschaften von Textilien spielen eine wesentliche Rolle bei ihrer Funktionalisierung mit mikro- und nanometergroßen Polymerkapseln, die eine kontrollierte Freiset-zung von Wirkstoffen ermöglichen. Die auf die Textiloberfläche aufgebrachten Kapseln bieten zusätzliche Funktionen wie desodorierende, antimikrobielle oder insektenabweisende Eigenschaften. Die Effizienz der Kapselbindung hängt von der Wechselwirkung zwischen dem ausgewählten Textilmaterial und der Art der Kapseln ab. In dieser Untersuchung wurden die Oberflächeneigenschaften der Textilien systematisch modifiziert, um die Bindung von Kapseln aus Polyethylenglykol zu verbessern. In der ersten Phase der Textilauswahl wurden vier verschiedene Textilmaterialien aus 100% Einzelfaser analysiert. Unter den untersuchten Textilproben wurden Baumwoll- und Polyestermischungen aufgrund ihrer höheren Hydrophobizität, ihres geringeren negativen Zeta-Potentials nach der Behandlung mit einer Ausrüstungslösung und ihrer breiten Anwendbarkeit in Sportbekleidung eingehend untersucht. In der zweiten Phase wurde ein statistischer Versuchsplan (design of experiment = DoE) verwendet, um Verfahrensfaktoren wie die Siliziumkonzentration (hydrophobe Komponente) in der Ausrüstungslösung und das Mischungsverhältnis von Baumwolle zu Polyester besser zu verstehen. Ein optimales Textil wurde entworfen, in dem die Kapselbindung auf den Baumwollfasern, die oben gewebt sind, und Polyesterfasern, die unten gewebt sind, maximiert wurde, um so Festigkeit und Leichtigkeit beim Bügeln zu gewährleisten. Auf der Oberfläche der ausgewählten Mischung, die mit der erforderlichen Siliziumkonzentration in der Ausrüstungslösung behandelt wurde, wurde die größte Menge an Polymerkapseln mit Eukalyptusöl zur Zecken- und Insektenabwehr bestimmt.


Mr. Wazir Akbar, Department of Mechanical Engineering, Ozyegin University, Istanbul, Turkey 34794, E-Mail:

Wazir Akbar received his BSc. degree from mechanical engineering department of UET Peshawar, Pakistan in 2013 and MSc. degree from Ozyegin University, Istanbul in 2016. His MSc thesis focused on developing functional particles and systems for textile applications. His research interests include materials and surface characterization and computational fluid mechanics. He is currently a PhD student at the department of mechanical engineering at the Ozyegin University and working on micro-modelling of nanoparticle slurry systems for chemical mechanical planarization applications.

Dr. Bahar Basim's research experience and interests extend within the applications nanotechnology in manufacturing. She received her PhD from the University of Florida Materials Science and Engineering Department in 2002 with specializations in particle science and technology and electronic materials. Her doctorate dissertation was supported by the National Science Foundation Engineering Research Center for Particle Science and Technology and focused on slurry design for chemical mechanical planarization (CMP) process. After graduation, she worked as a senior process engineer for Intel Corporation on 90 nm node flash development in Santa Clara CA and joined Texas Instruments Incorporated in Dallas TX, where she contributed to CMP process development, non-volatile memory product development, yield enhancement and process integration of 90/65-nm CMOS, flash and ferroelectric memory device manufacturing as a Process Integration Engineer with the Analog Technology Development Group. She is a Member of Technical Staff at TI since 2007. Dr. In September 2009 Dr. Basim joined academia as a founder faculty of a Private University in Europe. She has numerous granted US patents and international patent applications on nanotechnology applications in microelectronics, coatings and surface science in addition to many technical papers, books and presentations. She is the organizing member of the Electrochemical Society CMP symposia since 2010 and a referee for many technical journals on microelectronics manufacturing. She has founded the BioCapSOL Start-up Company in Europe in 2016. Dr. Basim is affiliated with the University of Texas at Dallas Natural Science and Research Laboratory and continuing her research on CMP, thin films, interfaces and implementation of CMP process on 3-D objects as an alternative nano-structuring technique.


References

1. Han, M. S., Park, Y. and Park, C. H.: Development of superhydrophobic polyester fabrics using alkaline hydrolysis and coating with fluorinated polymers, Fibers, Fibersibers Polym., 17 (17) (2016) 241247. 10.1007/s12221-016-5693-7Suche in Google Scholar

2. Hanumansetty, S., Maity, J., Foster, R. and O’Rear, E. A.: Stain Resistance of Cotton Fabrics before and after Finishing with Admicellar Polymerization, Appl. Sci., 2 (2) (2012) 192205. 10.3390/app2010192Suche in Google Scholar

3. Yang, C. Q., Yang, H. and Chen, Q.: New Development in Flame Retardant Finishing of Cotton Blend Fabrics, Key Eng. Mater., 671 (2016) 157172. 10.4028/www.scientific.net/KEM.671.157Suche in Google Scholar

4. Suchada Tragoonwichian, N. Y. and O’Rear, Edgar A.: Broad Ultraviolet Protection by Copolymerization of 2-[3-(2H-Benzotriazole-2-yl)-4-hydroxyphenyl]ethyl methacrylate and 2-Hydroxy-4-acryloyloxybenzophenone on Cotton via Admicellar Polymerization, J, J. Appl. Polym. Sci., 108 (108) (2008) 40044013. 10.1002/app.28049Suche in Google Scholar

5. Akbar, W., Noor, M. R., Kowal, K., Syed, T., Soulimane, T. and Basim, G. B.: Characterization and antibacterial properties of nanoboron powders and nanoboron powder coated textiles, Adv. Powder Technol., 28 (28) (2017) 596610. 10.1016/j.apt.2016.11.012Suche in Google Scholar

6. Park, K. Y., Jeong, C. I., Lee, H. E., Cho, S. H. and Suh, H. S.: Wetting transition and optimal design for microstructured surfaces with hydrophobic and hydrophilic materials. J. Colloid Interface Sci., 336 (336) (2009) 298303. PMid:19426991; 10.1016/j.jcis.2009.04.022Suche in Google Scholar PubMed

7. Gao, Y. and Cranston, R.: Recent Advances in Antimicrobial Treatments of Textiles, Text. Res. J., 78 (1) (2008) 6072. 10.1177/0040517507082332Suche in Google Scholar

8. Padleckiene, I. and Petrulis, D.: Monitoring flexing fatigue damage in the coating of a breathable-coated textile, Fibres Text. East. Eur., 18 (18) (2010) 7377, 2010.Suche in Google Scholar

9. Troynikov, O., Nawaz, N. and Watson, C.: Durability of vapor-permeable waterproof textile materials used in sailing protective apparel, Text. Res. J., 88 (88) (2018) 28252840. 10.1177/0040517517732079Suche in Google Scholar

10. Wang, C., Li, M., Jiang, G., Fang, K. and Tian, A.: Surface Modification with Silicon Sol on Cotton Fabrics for Water-Repellent Finishing, Res. J. Text. Appar., 11 (11) (2007) 2734. 10.1108/RJTA-11-03-2007-B004Suche in Google Scholar

11. Caschera, D., Mezzi, A., Cerri, L., de Caro, T., Riccucci, C., Ingo, G. M., Padeletti, G., Biasiucci, M., Gigli, G. and CorteseB.: Effects of plasma treatments for improving extreme wettability behavior of cotton fabrics, Cellulose21 (21) (2014) 741756. 10.1007/s10570-013-0123-0Suche in Google Scholar

12. Deng, B., Cai, R., Yu, Y., Jiang, H., Wang, C., Li, J., Li, L., Yu, M., Li, J., Xie, L., HuangQ. and Fan, C.: Laundering durability of superhydrophobic cotton fabric, Adv. Mater., 22 (22) (2010) 54735477. PMid:20941799; 10.1002/adma.201002614Suche in Google Scholar

13. Su, C. and Li, J.: The friction property of super-hydrophobic cotton textiles, Appl. Surf. Sci., 256 (256) (2010) 42204225. 10.1016/j.apsusc.2010.02.006Suche in Google Scholar

14. Quagliarini, E., Bondioli, F., Goffredo, G. B., Licciulli, A.: and Munafò, P.: Self-cleaning materials on Architectural Heritage: Compatibility of photo-induced hydrophilicity of TiO2 coatings on stone surfaces, J, J. Cult. Herit., 14 (14) (2013) 17. 10.1016/j.culher.2012.02.006Suche in Google Scholar

15. Borisova, A. and Reihmane, S.: Hydrophobic treatment of blended fabric's surface, Medziagotyra, 19 (19) (2013) 169173. 10.5755/j01.ms.19.2.1139Suche in Google Scholar

16. Zsidai, L., De Baets, P., Samyn, P., Kalacska, G., Van Peteghem, A. P. and Van Parys, F.: The tribological behavior of engineering plastics during sliding friction investigated with small-scale specimens, Wear, Wearear, 253 (56) (2002) 673688. 10.1016/S0043-1648(02)00149-7Suche in Google Scholar

17. Topalbekiroğlu, M. and Kübra Kaynak, H.: The effect of weave type on the dimensional stability of woven fabrics, Int. J. Cloth. Sci. Technol., 20 (20) (2008) 281288. 10.1108/09556220810898890Suche in Google Scholar

18. Shi, Z., Wyman, I., Liu, G., Hu, H., Zou, H. and Hu, J.: Preparation of water-repellent cotton fabrics from fluorinated diblock copolymers and evaluation of their durability, Polymer, Polymerolymer54 (54) (2013) 64066414. 10.1016/j.polymer.2013.09.043Suche in Google Scholar

19. Karagoz, A. and Dincer, S.: Microwave-Assisted Synthesis of Poly(e-caprolactone)-block-poly(ethylene glycol) and Poly(lactide)-block-poly(ethylene glycol), Macromol, Macromolacromol. Symp., 295 (295) (2010) 131137. 10.1002/masy.200900170Suche in Google Scholar

20. Montgomery, D. C. and Runger, G. C.: Applied Statistics and Probability for Engineers, 7th Ed p. 431, ISBN: 978111940036-3.Suche in Google Scholar

Received: 2019-07-07
Accepted: 2019-07-21
Published Online: 2019-10-01
Published in Print: 2019-09-16

© 2019, Carl Hanser Publisher, Munich

Heruntergeladen am 9.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/113.110645/html
Button zum nach oben scrollen