Surface Characterization of Textiles for Optimization of Functional Polymeric Nano-Capsule Attachment
-
Wazir Akbar
Abstract
Surface properties of textiles play an essential role in their functionalization with micro/nanometer-sized polymeric capsules containing active agents that can provide controlled release. The attached capsules provide additional functionalities such as deodorizing, anti-microbial, or insect repellant properties. The efficiency of capsule attachment depends on the interaction between the selected textile material and the type of capsules. In this study, surface characteristics of the textiles were modified systematically to enhance the attachment of polyethyleneglycol based polymeric capsules. In the first phase of textile selection, four different textile materials, composed of 100% single fiber, were analyzed. Among the analyzed textile samples, cotton and polyester blends were investigated in detail due to their higher hydrophobicity, less negative zeta potential after treatment with finishing solution and broad applicability in sports outfits. In the second phase, statistical design of experiment (DoE) approach was used to have a deeper understanding of the processing factors such as the silicon (hydrophobic component) concentration in the finishing solution and the cotton/polyester blend ratio. An optimal textile was designed based on maximizing the capsule attachment on the cotton fibers woven on top and polyester at the bottom for providing strength and ease of ironing. The selected blend, treated with the required silicon concentration in the finishing solution, retained the highest amount of polymeric capsules containing eucalyptus oil for tick/insect repellency.
Kurzfassung
Die Oberflächeneigenschaften von Textilien spielen eine wesentliche Rolle bei ihrer Funktionalisierung mit mikro- und nanometergroßen Polymerkapseln, die eine kontrollierte Freiset-zung von Wirkstoffen ermöglichen. Die auf die Textiloberfläche aufgebrachten Kapseln bieten zusätzliche Funktionen wie desodorierende, antimikrobielle oder insektenabweisende Eigenschaften. Die Effizienz der Kapselbindung hängt von der Wechselwirkung zwischen dem ausgewählten Textilmaterial und der Art der Kapseln ab. In dieser Untersuchung wurden die Oberflächeneigenschaften der Textilien systematisch modifiziert, um die Bindung von Kapseln aus Polyethylenglykol zu verbessern. In der ersten Phase der Textilauswahl wurden vier verschiedene Textilmaterialien aus 100% Einzelfaser analysiert. Unter den untersuchten Textilproben wurden Baumwoll- und Polyestermischungen aufgrund ihrer höheren Hydrophobizität, ihres geringeren negativen Zeta-Potentials nach der Behandlung mit einer Ausrüstungslösung und ihrer breiten Anwendbarkeit in Sportbekleidung eingehend untersucht. In der zweiten Phase wurde ein statistischer Versuchsplan (design of experiment = DoE) verwendet, um Verfahrensfaktoren wie die Siliziumkonzentration (hydrophobe Komponente) in der Ausrüstungslösung und das Mischungsverhältnis von Baumwolle zu Polyester besser zu verstehen. Ein optimales Textil wurde entworfen, in dem die Kapselbindung auf den Baumwollfasern, die oben gewebt sind, und Polyesterfasern, die unten gewebt sind, maximiert wurde, um so Festigkeit und Leichtigkeit beim Bügeln zu gewährleisten. Auf der Oberfläche der ausgewählten Mischung, die mit der erforderlichen Siliziumkonzentration in der Ausrüstungslösung behandelt wurde, wurde die größte Menge an Polymerkapseln mit Eukalyptusöl zur Zecken- und Insektenabwehr bestimmt.
References
1. Han, M. S., Park, Y. and Park, C. H.: Development of superhydrophobic polyester fabrics using alkaline hydrolysis and coating with fluorinated polymers, Fibers, Fibersibers Polym., 17 (17) (2016) 241–247. 10.1007/s12221-016-5693-7Suche in Google Scholar
2. Hanumansetty, S., Maity, J., Foster, R. and O’Rear, E. A.: Stain Resistance of Cotton Fabrics before and after Finishing with Admicellar Polymerization, Appl. Sci., 2 (2) (2012) 192–205. 10.3390/app2010192Suche in Google Scholar
3. Yang, C. Q., Yang, H. and Chen, Q.: New Development in Flame Retardant Finishing of Cotton Blend Fabrics, Key Eng. Mater., 671 (2016) 157–172. 10.4028/www.scientific.net/KEM.671.157Suche in Google Scholar
4. Suchada Tragoonwichian, N. Y. and O’Rear, Edgar A.: Broad Ultraviolet Protection by Copolymerization of 2-[3-(2H-Benzotriazole-2-yl)-4-hydroxyphenyl]ethyl methacrylate and 2-Hydroxy-4-acryloyloxybenzophenone on Cotton via Admicellar Polymerization, J, J. Appl. Polym. Sci., 108 (108) (2008) 4004–4013. 10.1002/app.28049Suche in Google Scholar
5. Akbar, W., Noor, M. R., Kowal, K., Syed, T., Soulimane, T. and Basim, G. B.: Characterization and antibacterial properties of nanoboron powders and nanoboron powder coated textiles, Adv. Powder Technol., 28 (28) (2017) 596–610. 10.1016/j.apt.2016.11.012Suche in Google Scholar
6. Park, K. Y., Jeong, C. I., Lee, H. E., Cho, S. H. and Suh, H. S.: Wetting transition and optimal design for microstructured surfaces with hydrophobic and hydrophilic materials. J. Colloid Interface Sci., 336 (336) (2009) 298–303. PMid:19426991; 10.1016/j.jcis.2009.04.022Suche in Google Scholar PubMed
7. Gao, Y. and Cranston, R.: Recent Advances in Antimicrobial Treatments of Textiles, Text. Res. J., 78 (1) (2008) 60–72. 10.1177/0040517507082332Suche in Google Scholar
8. Padleckiene, I. and Petrulis, D.: Monitoring flexing fatigue damage in the coating of a breathable-coated textile, Fibres Text. East. Eur., 18 (18) (2010) 73–77, 2010.Suche in Google Scholar
9. Troynikov, O., Nawaz, N. and Watson, C.: Durability of vapor-permeable waterproof textile materials used in sailing protective apparel, Text. Res. J., 88 (88) (2018) 2825–2840. 10.1177/0040517517732079Suche in Google Scholar
10. Wang, C., Li, M., Jiang, G., Fang, K. and Tian, A.: Surface Modification with Silicon Sol on Cotton Fabrics for Water-Repellent Finishing, Res. J. Text. Appar., 11 (11) (2007) 27–34. 10.1108/RJTA-11-03-2007-B004Suche in Google Scholar
11. Caschera, D., Mezzi, A., Cerri, L., de Caro, T., Riccucci, C., Ingo, G. M., Padeletti, G., Biasiucci, M., Gigli, G. and CorteseB.: Effects of plasma treatments for improving extreme wettability behavior of cotton fabrics, Cellulose21 (21) (2014) 741–756. 10.1007/s10570-013-0123-0Suche in Google Scholar
12. Deng, B., Cai, R., Yu, Y., Jiang, H., Wang, C., Li, J., Li, L., Yu, M., Li, J., Xie, L., HuangQ. and Fan, C.: Laundering durability of superhydrophobic cotton fabric, Adv. Mater., 22 (22) (2010) 5473–5477. PMid:20941799; 10.1002/adma.201002614Suche in Google Scholar
13. Su, C. and Li, J.: The friction property of super-hydrophobic cotton textiles, Appl. Surf. Sci., 256 (256) (2010) 4220–4225. 10.1016/j.apsusc.2010.02.006Suche in Google Scholar
14. Quagliarini, E., Bondioli, F., Goffredo, G. B., Licciulli, A.: and Munafò, P.: Self-cleaning materials on Architectural Heritage: Compatibility of photo-induced hydrophilicity of TiO2 coatings on stone surfaces, J, J. Cult. Herit., 14 (14) (2013) 1–7. 10.1016/j.culher.2012.02.006Suche in Google Scholar
15. Borisova, A. and Reihmane, S.: Hydrophobic treatment of blended fabric's surface, Medziagotyra, 19 (19) (2013) 169–173. 10.5755/j01.ms.19.2.1139Suche in Google Scholar
16. Zsidai, L., De Baets, P., Samyn, P., Kalacska, G., Van Peteghem, A. P. and Van Parys, F.: The tribological behavior of engineering plastics during sliding friction investigated with small-scale specimens, Wear, Wearear, 253 (5–6) (2002) 673–688. 10.1016/S0043-1648(02)00149-7Suche in Google Scholar
17. Topalbekiroğlu, M. and Kübra Kaynak, H.: The effect of weave type on the dimensional stability of woven fabrics, Int. J. Cloth. Sci. Technol., 20 (20) (2008) 281–288. 10.1108/09556220810898890Suche in Google Scholar
18. Shi, Z., Wyman, I., Liu, G., Hu, H., Zou, H. and Hu, J.: Preparation of water-repellent cotton fabrics from fluorinated diblock copolymers and evaluation of their durability, Polymer, Polymerolymer54 (54) (2013) 6406–6414. 10.1016/j.polymer.2013.09.043Suche in Google Scholar
19. Karagoz, A. and Dincer, S.: Microwave-Assisted Synthesis of Poly(e-caprolactone)-block-poly(ethylene glycol) and Poly(lactide)-block-poly(ethylene glycol), Macromol, Macromolacromol. Symp., 295 (295) (2010) 131–137. 10.1002/masy.200900170Suche in Google Scholar
20. Montgomery, D. C. and Runger, G. C.: Applied Statistics and Probability for Engineers, 7th Ed p. 431, ISBN: 978111940036-3.Suche in Google Scholar
© 2019, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Microbial Synthesis
- Production of Non-Toxic Biosurfactant – Surfactin – Through Microbial Fermentation of Biomass Hydrolysates for Industrial and Environmental Applications
- Characterisation Novel Biosurfactants
- Structures and Properties of Sophorolipids in Dependence of Microbial Strain, Lipid Substrate and Post-Modification
- Personal Care/Cleansing
- Amino-Acid Surfactants in Personal Cleansing (Review)
- Toward Milder Personal Care Cleansing Products: Fast ex vivo Screening of Irritating Effects of Surfactants on Skin Using Raman Microscopy
- Textile Surface Modification
- Surface Characterization of Textiles for Optimization of Functional Polymeric Nano-Capsule Attachment
- Enhanced Oil Recovery and Oil-Spill Dispersants
- Pseudo-Gemini Biosurfactants with CO2 Switchability for Enhanced Oil Recovery (EOR)
- Hydrophilic-Lipophilic-Difference (HLD) Guided Formulation of Oil Spill Dispersants with Biobased Surfactants
- Mineral Processing
- Floatability of Chalcopyrite by Glycolipid Biosurfactants as Compared to Traditional Thiol Surfactants
- Antimicrobial Properties
- Stability of Emulsions and Nanoemulsions Stabilized with Biosurfactants, and their Antimicrobial Performance against Escherichia coli O157:H7 and Listeria monocytogenes
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Microbial Synthesis
- Production of Non-Toxic Biosurfactant – Surfactin – Through Microbial Fermentation of Biomass Hydrolysates for Industrial and Environmental Applications
- Characterisation Novel Biosurfactants
- Structures and Properties of Sophorolipids in Dependence of Microbial Strain, Lipid Substrate and Post-Modification
- Personal Care/Cleansing
- Amino-Acid Surfactants in Personal Cleansing (Review)
- Toward Milder Personal Care Cleansing Products: Fast ex vivo Screening of Irritating Effects of Surfactants on Skin Using Raman Microscopy
- Textile Surface Modification
- Surface Characterization of Textiles for Optimization of Functional Polymeric Nano-Capsule Attachment
- Enhanced Oil Recovery and Oil-Spill Dispersants
- Pseudo-Gemini Biosurfactants with CO2 Switchability for Enhanced Oil Recovery (EOR)
- Hydrophilic-Lipophilic-Difference (HLD) Guided Formulation of Oil Spill Dispersants with Biobased Surfactants
- Mineral Processing
- Floatability of Chalcopyrite by Glycolipid Biosurfactants as Compared to Traditional Thiol Surfactants
- Antimicrobial Properties
- Stability of Emulsions and Nanoemulsions Stabilized with Biosurfactants, and their Antimicrobial Performance against Escherichia coli O157:H7 and Listeria monocytogenes