Home Structures and Properties of Sophorolipids in Dependence of Microbial Strain, Lipid Substrate and Post-Modification
Article
Licensed
Unlicensed Requires Authentication

Structures and Properties of Sophorolipids in Dependence of Microbial Strain, Lipid Substrate and Post-Modification

  • Timo Bollmann , Christian Zerhusen , Birgit Glüsen and Ulrich Schörken
Published/Copyright: October 1, 2019
Become an author with De Gruyter Brill

Abstract

Starmerella bombicola and Candida kuoi are known to secrete structurally divergent sophorolipid type glycolipids (SLs) under nitrogen limitation. In the present work SLs were produced in titers of 3.9–78.6 g L−1 with the two yeast strains utilizing stearic, oleic and linoleic acid as substrates. HPLC-ELSD combined with HPLC-MS and NMR spectroscopy was used for qualitative and quantitative analysis of the SL mixtures. While S. bombicola almost exclusively produced lactonic diacetylated SLs with a preference for subterminal fatty acid hydroxylation, C. kuoi synthesized diacetylated, terminally hydroxylated open chain SLs with up to 25% of dimeric and trimeric products. Surface tension measurements showed a higher surface and interface activity of the lactonic products from S. bombicola in comparison to open chain C. kuoi based SLs. The lowest CMC of 5.4 mg L−1 and minimum surface tension at the CMC of 35.9 mN m−1 were obtained for the stearic acid based lactones. Similar tendencies were observed in interfacial tension analysis with 3.6 mN m−1 for oleic acid based lactonic SLs at the interface water/paraffin oil in comparison to 9.4 mN m−1 for the corresponding open-chain SL. The acidic C. kuoi SL mixtures directly exhibited foaming properties whereas the S. bombicola SLs needed alkaline deacetylation and ring opening to display foaming comparable to that of the structurally related alkyl polyglycosides.

Kurzfassung

Starmerella bombicola und Candida kuoi sekretieren strukturell divergente Glycolipide mit Sophorolipid-(SL)-Struktur unter Stickstofflimitierung. In der vorliegenden Arbeit wurden Sophorolipide mit zwei Hefestämmen und Stearin-, Öl- und Linolsäure als Substrate in Ausbeuten von 3.9–78.6 g L−1 hergestellt. HPLC-ELSD-Quantifizierung in Kombination mit HPLC-MS und NMR-Spektroskopie wurde zur Analyse der SL-Mischungen eingesetzt. S. bombicola produzierte bevorzugt subterminal hydroxylierte, lactonische Sophorolipide, während C. kuoi offenkettige Sophorolipide mit terminal hydroxylierten Fettsäuren und einem Anteil an dimeren und trimeren Produkten von bis zu 25% synthetisierte. Oberflächenspannungsmessungen in Wasser zeigten niedrigere Werte für die lactonischen Produkte aus S. bombicola im Vergleich zu den offenkettigen C. kuoi-SLs. Die niedrigsten Werte für CMC und Oberflächenspannung von 5.4 mg L−1 und 35.9 mN m−1 wurden für die Stearinsäure-basierten Lactone erhalten. Ähnliche Tendenzen zeigten sich bei Untersuchungen an der Grenzfläche Wasser/Paraffinöl mit 3.6 mN m−1 für die Lactone auf Ölsäurebasis und 9.4 mN m−1 für die korrespondierenden offenkettigen SL. Die sauren C. kuoi-SL-Mischungen zeigten sofort Schaumbildung, wohingegen die S. bombicola-SLs erst nach alkalischer Deacetylierung und Ringöffnung ein zu den strukturell verwandten Alkylpolyglykosiden vergleichbares Schaumvermögen aufwiesen.


Correspondence address, Prof. Dr. Ulrich Schörken, TH Köln – Campus Leverkusen, Faculty of Applied Natural Sciences, CHEMPARK E39, Kaiser-Wilhelm-Allee, 51368 Leverkusen Germany, Tel.: 0049-214-32831-4610, E-Mail:

Prof. Dr. Ulrich Schörken studied chemistry at the University of Cologne and did his Ph.D. at the Institute of Biotechnology IBT1 of the Scientific Research Centre Jülich (FZ Jülich) under the supervision of Prof. Sahm. After one year of post-doctoral research at FZ Jülich he started his industrial career in 1998 in the enzyme engineering group of company Henkel AG & Co. KGaA in Düsseldorf, Germany. In 2000, he joined the oleochemical company Cognis GmbH (now part of BASF AG), where he established the lipid biotechnology research group and worked as senior scientist in different research positions. In 2010, he got an appointment as Professor for Biotechnology & Green Chemistry at the newly founded Campus Leverkusen of TH Köln. His research focuses on lipid biotechnology, amphiphilic molecules, utilization of renewable resources and application of biocatalysts and microorganisms for the production of bio-based chemicals. Prof. Schörken is a member of the Euro Fed Lipid and the NRW Cluster of Industrial Biotechnology CLIB 2021. In total he holds more than 60 publications and patents.

Prof. Dr. Birgit Glüsen studied chemistry at the Universities of Münster and Marburg and obtained her PhD in Physical Chemistry. She worked as a Post-Doc in Gothenburg (Sweden) and as a Feodor-Lynen fellow of the Alexander-von-Humboldt Foundation at Cormell University, Itaca, NY. In 1999 she joined Henkel AG & Co KGaA in Düsseldorf to work in different positions in research and development especially for laundry and home care products. In 2013 Birgit Glüsen was appointed Professor for Physical Chemistry at the TH Köln. Her research interests are focused on interface science and in the interaction of polymers with surfactants and small molecules in bulk, solution and at interfaces. Birgit Glüsen is currently the chairwoman of the GDCh Division “Detergent Chemistry”.

Timo Bollmann received his B.Sc. in Technical Chemistry and M.Sc. in Applied Chemistry from the TH Köln – Faculty of Applied Natural Sciences. He did his Master thesis at TH Köln in the group of Ulrich Schörken. Since 2017 he is PhD student in the group of Birgit Glüsen.

Christian Zerhusen received his M.Sc. in Molecular and Applied Biotechnology from the RWTH Aachen University, Germany (2016) – specialization in Industrial Biotechnology and Biochemical Engineering. Currently works as a Ph.D student in the group of Prof. Schörken. Main research topics are microbial biosurfactants and bioprocess development.


References

1. Marktanalyse Nachwachsende Rohstoffe; Schriftenreihe Nachwachsende Rohstoffe 2014, Band 34 (2014), Herausgeber FNR (ISBN 978-3-942147-18-7), (https://fnr.de/marktanalyse/marktanalyse.pdf).Search in Google Scholar

2. Ivankovic, T. and Hrenovic, J.: Surfactants in the environment, Arch. Ind. Hyg. Toxicol.61 (2010) 95110. PMid:20338873; 10.2478/10004-1254-61-2010-1943Search in Google Scholar PubMed

3. Marchant, R. and Banat, I. M.: Microbial biosurfactants: challenges and opportunities for future exploitation, Trends Biotechnol.30 (2012) 55865. PMid:22901730; 10.1016/j.tibtech.2012.07.003Search in Google Scholar PubMed

4. Geys, R., Soetaert, W. and Van Bogaert, I.: Biotechnological opportunities in biosurfactant production, Curr. Opin. Biotechnol.30 (2014) 6672. PMid:24995572; 10.1016/j.copbio.2014.06.002Search in Google Scholar PubMed

5. Schörken, U., Barbe, S., Hahn, T. and Zibek, S.: Biotechnological routes towards bio-based surfactants: State of the art and future challenges, SOFW-Journal (English edition)05 (2017) 1830.Search in Google Scholar

6. Tulloch, A. P. and Spencer, J. F. T.: Structure and reactions of lactonic and acidic sophorosides of 17-hydroxyoctadecanoic acid, Can. J. Chem.46 (1968) 15231528. 10.1139/v68-551Search in Google Scholar

7. Otto, R. T., Daniel, H. J., Pekin, G., Müller-Decker, K., Fürstenberger, G., Reuss, M., and Syldatk, C.: Production of sophorolipids from whey, Appl. Microbiol. Biotechnol.52 (1999) 495501. PMid:10570796; 10.1007/s002530051551Search in Google Scholar PubMed

8. Konishi, M., Fukuoka, T., Morita, T., Imura, T. and Kitamoto, D.: Production of New Types of Sophorolipids by Candida batistae, J Oleo Sci57 (2008) 359369. PMid:18469499; 10.5650/jos.57.359Search in Google Scholar PubMed

9. Kurtzman, C. P., Price, N. P. J., Ray, K. J. and Kuo, T. M.: Production of sophorolipid biosurfactants by multiple species of the Starmerella (Candida) bombicola yeast clade, FEMS, FEMS Microbiol Lett311 (2010) 1401466. PMid:20738402; 10.1111/j.1574-6968.2010.02082.xSearch in Google Scholar PubMed

10. Price, N. P. J., Ray, K. J., Vermillion, K. E., Dunlap, C. A. and Kurtzman, C. P.: Structural characterization of novel sophorolipid biosurfactants from a newly identified species of Candida yeast, Carbohydr, Carbohydrarbohydr. Res.348 (2012) 3341. PMid:22197069; 10.1016/j.carres.2011.07.016Search in Google Scholar PubMed

11. Ashby, R. D., Solaiman, D. K. Y. and Foglia, T. A.: Property control of sophorolipids: influence of fatty acid substrate and blending, Biotechnol Lett30 (2008) 10931100. PMid:18264681; 10.1007/s10529-008-9653-1Search in Google Scholar PubMed

12. Delbeke, E. I. P., Everaert, J., Uitterhaegen, E., Verweire, S., Verlee, A., Talou, T., Soetaert, W., Van Bogaert, I. N. A. and Stevens, C. V.: Petroselinic acid purification and its use for the fermentation of new sophorolipids, AMB Expr.6 (2016) 28. PMid:27033544; 10.1186/s13568-016-0199-7Search in Google Scholar PubMed PubMed Central

13. Hirata, Y., Ryu, M., Igarashi, K., Nagatsuka, A., Furuta, T., Kanaya, S. and Sugiura, M.: Natural Synergism of Acid and Lactone Type Mixed Sophorolipids in Interfacial Activities and Cytotoxicities, J. Oleo Sci.58 (2009) 565572. PMid:19844071; 10.5650/jos.58.565Search in Google Scholar PubMed

14. Daverey, A. and Pakshirajan, K.: Production, characterization and properties of sophorolipids from the yeast Candida bombicola using a low-cost fermentative medium, Appl, Applppl. Biochem. Biotech.158 (2009) 663674. PMid:19082764; 10.1007/s12010-008-8449-zSearch in Google Scholar PubMed

15. Hirata, Y., Ryu, M., OdaY., Igarashi, K., Nagatsuka, A., and Furuta, T.: Novel characteristics of sophorolipids, yeast glycolipid biosurfactants, as biodegradable low-foaming surfactants, J, J. Biosci. Bioeng108 (2009) 142146. PMid:19619862; 10.1016/j.jbiosc.2009.03.012Search in Google Scholar PubMed

16. Joshi-Navare, K., Khanvilkar, P. and Prabhune, A.: Jatropha oil derived sophorolipids: Production and characterization as laundry detergent additive, Biochem. Res. Int. vol. 2013 (2013). PMid:24455261; 10.1155/2013/169797Search in Google Scholar PubMed PubMed Central

17. Morya, V. K., Park, J. H., Kim, T. J. and Kim, E. K.: Production and characterization of low molecular weight sophorolipid under fed-batch culture, Biores. Technol.143 (2013) 282288. PMid:23807367; 10.1016/j.biortech.2013.05.094Search in Google Scholar PubMed

18. Minucelli, T., Ribeiro-Viana, R. M., Borsato, D., Andrade, G., Cely, M. V. T. and de Oliveira, M. R.: Sophorolipids Production by Candida bombicola ATCC 22214 and its Potential Application in Soil Bioremediation, Waste, Wasteaste Biomass Valorization8 (2017) 743753. 10.1007/s12649-016-9592-3Search in Google Scholar

19. Zhang, L., Somasundaran, P., Singh, S. K., Felse, A. P. and Gross, R. A.: Synthesis and interfacial properties of sophorolipid derivatives, Colloids Surf. A: Physicochem. Eng. Aspects240 (2004) 7582. 10.1016/j.colsurfa.2004.02.016Search in Google Scholar

20. Develter, D. W. G. and Lauryssen, L. M. L.: Properties and industrial applications of sophorolipids, Eur. J. Lipid Sci. Technol.112 (2010) 628638. 10.1002/ejlt.200900153Search in Google Scholar

21. Rau, U., Heckmann, R., Wray, V., and Lang, S.: Enzymatic conversion of a sophorolipid into a glucose lipid, Biotechnol. Lett.21 (1999) 973977. 10.1023/A:1005665222976Search in Google Scholar

22. Wu, M., Ding, H., Wang, S., and Xu, S.: Optimizing Conditions for the Purification of Linoleic Acid from Sunflower Oil by Urea Complex Fractionation, J, J. Am. Oil Chem. Soc.85 (2008) 677684. 10.1007/s11746-008-1245-7   Search in Google Scholar

23. Cooper, D. G. and Paddock, D. A.: Production of a Biosurfactant from Torulopsis bombicola, Appl. Environ. Microbiol.47 (1984) 173176.10.1128/aem.47.1.173-176.1984Search in Google Scholar

24. Davila, A. M., Marchal, R. and Vandecasteele, J. P.: Kinetics and balance of a fermentation free from product inhibition: sophorose lipid production by Candida bombicola, Appl, Applppl. Microbiol. Biotechnol.38 (1992) 611. 10.1007/BF00169410Search in Google Scholar

25. Lever, M.: A new reaction for colorimetric determination of carbohydrates, Anal. Biochem.47 (1972) 273279. 10.1016/0003-2697(72)90301-6Search in Google Scholar

26. De Koster, C. G., Heerma, W., Pepermans, H. A. M., Groenewegen, A., Peters, H. and Haverkamp, J.: Tandem Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy Studies of Candida bombicola Sophorolipids and Product Formed on Hydrolysis by Cutinase, Anal, Analnal. Biochem.230 (1995) 135148. PMid:8585609; 10.1006/abio.1995.1448Search in Google Scholar PubMed

27. Geys, R.; De Graeve, M.; Lodens, S.; Van Malderen, J.; Lemmens, C.; De Smet, M.; Mincke, S.; Van Bogaert, I. N. A.; Stevens, C.; De Maeseneire, S. L.; Roelants, S. L. K. W.; and Soetaert, W. K. G.: Increasing Uniformity of Biosurfactant Production in Starmerella bombicola via the Expression of Chimeric Cytochrome P450 s, Colloids Interfaces2018, 2, 42. 10.3390/colloids2040042Search in Google Scholar

28. van Bogaert, I. N., Zhang, J., and Soetaert, W.: Microbial synthesis of sophorolipids, Process Biochem.46 (2011) 821833. 10.1016/j.procbio.2011.01.010Search in Google Scholar

29. van Bogaert, I. N., Buyst, D., Martins, J. C., Roelants, S. L. K. W. and Soetaert, W.: Synthesis of bolaform biosurfactants by engineered Starmerella bombicola yeast, Biotechnol. Bioeng.113 (2016) 26442651. PMid:27317616; 10.1002/bit.26032Search in Google Scholar PubMed

30. Ma, X., Li, H. and Song, X.: Surface and biological activity of sophorolipid molecules produced by Wickerhamiella domercqiae var. sophorolipid CGMCC 1576, J, J. Colloid Interface Sci.376 (2012) 165172. PMid:22459028; 10.1016/j.jcis.2012.03.007Search in Google Scholar PubMed

31. Chen, M., Dong, C., Penfold, J., Thomas, R. K., Smyth, T. J. P. and Perfumo, A.: Adsorption of sophorolipid biosurfactants on their own and mixed with sodium dodecyl benzene sulfonate at the air/water interface, Langmuir, Langmuirangmuir27 (2011) 88548866. PMid:21657229; 10.1021/la201660nSearch in Google Scholar PubMed

32. Daverey, A. and Pakshirajan, K.: Sophorolipids from Candida bombicola using mixed hydrophilic substrates: Production, purification and characterization, Colloids, Colloidsolloids Surf. B79 (2010) 246257. PMid:20427162; 10.1016/j.colsurfb.2010.04.002Search in Google Scholar PubMed

33. Koh, A. and Gross, R.: Molecular editing of sophorolipids by esterification of lipid moieties: Effects on interfacial properties at paraffin and synthetic crude oil-water interfaces, Colloids, Colloidsolloids Surf. A507 (2016) 170181. 10.1016/j.colsurfa.2016.07.084Search in Google Scholar

Received: 2019-06-10
Accepted: 2019-07-16
Published Online: 2019-10-01
Published in Print: 2019-09-16

© 2019, Carl Hanser Publisher, Munich

Downloaded on 9.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/113.110640/html
Scroll to top button