Startseite Production of Non-Toxic Biosurfactant – Surfactin – Through Microbial Fermentation of Biomass Hydrolysates for Industrial and Environmental Applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Production of Non-Toxic Biosurfactant – Surfactin – Through Microbial Fermentation of Biomass Hydrolysates for Industrial and Environmental Applications

  • Buddhi P. Lamsal , Pathra Patra , Rajat Sharma und Christopher C. Green
Veröffentlicht/Copyright: 1. Oktober 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The economically viable large-scale production of the pure isoforms of the surfactin biosurfactants, involving bacterial – Bacillus subtilis – fermentation of biomass hydrolysate feedstock, relies on the types of bacterial strains, optimization of the fermentation processing parameters, differences in the composition of the carbon and nitrogen in the bacterial media, and the chromatography techniques used for isolation of the isoforms. Here, we biosynthesized the surfactin isoforms in their mixture forms through fermentation of biomass hydrolysates at 2 wt.% carbohydrate content. The surfactin isoforms were assessed for their surface-active properties and toxicity. The enzyme hydrolysates considered were from switchgrass, soyhull (fiber), alfalfa, and bagasse. The isoform mixtures obtained after fermentation of the hydrolysates and, glucose as a control, were concentrated using chromatography columns, and characterized for molecular weights (MWs) and relative distribution using LCMS. The isoform mixtures, obtained in different fermenters (5- and 15-L) and, for different hydrolysates, invariably constituted 5 isoforms with MWs as 992.6, 1006.6, 1020.6, 1034.6, 1048.6, 1062.6 m/z amu, with their relative proportions as 6, 24, 35, 24, and 10 weight % respectively. The surface tension values of all these isoforms, in the absence of electrolytes and at 12 ppt salinity, were similar: 37 (pH 6.5) and 31 (pH 9.5) mN/m. Furthermore, the emulsification index values for the isoforms were also similar: Dispersant-to-Oil ratio as 1:20. The LC50 for Gulf killifish, Fundulus grandis for these surfactin isoforms ranged between 10 and 20 mg/L; a microbially-produced surfactin variant FA-Glu (Fatty acid Glutamate) was least toxic with LC50 at ∼100 mg/L. Thus, the surfactin synthesis approach adopted here suggested that pure (>95 wt.%) non-toxic isoforms of surfactin biosurfactants can be produced in the forms of their mixtures with surface-active properties similar to those of the pure forms of the surfactin isoforms.

Kurzfassung

Die wirtschaftlich sinnvolle großtechnische Herstellung der reinen Isoformen des Surfactins bei der Fermentation des Biomasse-Hydrolysat-Ausgangsmaterials mit Bacillus subtilis beruht auf den Bakterienstämmen, der Optimierung der Fermentationsparameter, den Unterschieden in der Zusammensetzung von Kohlenstoff und Stickstoff in den Bakterienmedien und die zur Isolierung der Isoformen verwendeten Chromatographietechniken. In dieser Arbeit biosynthetisierten wir die Surfactin-Isoformen in ihren Mischungen durch Fermentation von Biomasse-Hydrolysaten bei einem Kohlenhydratgehalt von 2 Gew.-%. Die Surfactin-Isoformen wurden hinsichtlich ihrer oberflächenaktiven Eigenschaften und Toxizität bewertet. Die untersuchten Enzymhydrolysate stammten aus Rutenhirse, Sojaschale (Ballaststoffe), Luzerne und Bagasse. Die nach Fermentation der Hydrolysate und Glucose (als Kontrolle) erhaltenen Isoformenmischungen wurden in Chromatographiesäulen konzentriert und ihre Molekulargewichte (MWs) und relative Verteilung mit der LCMS zur Charakterisierung bestimmt. Die Isoformenmischungen, die in verschiedenen Fermentern (5 L und 15 L) für verschiedene Hydrolysate erhalten wurden, bestanden ausnahmslos aus 5 Isoformen mit einem Molekulargewicht von 992,6, 1006,6, 1020,6, 1034,6, 1048,6 und 1062,6 m/z amu. Ihre relativen Anteile waren 6, 24, 35, 24 bzw. 10 Gew.-%. Die Oberflächenspannungen aller dieser Isoformen waren in Abwesenheit von Elektrolyten und bei einem Salzgehalt von 12 ppt ähnlich: 37 mN/m (pH 6,5) und 31 mN/m (pH 9,5). Darüber hinaus waren auch die Emulgierungsindices für die Isoformen ähnlich: Dispergiermittel-zu-Öl-Verhältnis 1:20. Die LC50-Werte der Surfactin-Isoformen (bestimmt für Golfkillifische (Fundulus grandis) lagen zwischen 10 mg/L und 20 mg/L. Die mikrobiell erzeugte Surfactin-Variante FA-Glu (Fettsäure-Glutamat) war mit einem LC50-Wert von∼100 mg/L am wenigsten toxisch. Der hier angewandte Ansatz zur Surfactinsynthese zeigt somit deutlich, dass reine (>95 Gew.-%) nichttoxische Surfactinisoformen in ihren Mischungen hergestellt werden können, deren oberflächenaktiven Eigenschaften denen der reinen Surfactin-Isoformen ähnlich sind.


Correspondence address, Prof. Dr. Buddhi P. Lamsa, Department of Food Science and Human Nutrition, Iowa State University, 2312 Science Building, Iowa State University, Ames, IA 20010, USA, Tel.: +1 (515)294-8681, E-Mail:

Dr. Buddhi Lamsal completed his postdoctoral research in food science at Iowa State University in 2006 after completing a Ph.D. from the University of Wisconsin-Madison in 2004. He was a Research Assistant Professor at Kansas State University from 2006–2008. He started to work as an Assistant Professor in 2008 and became an Associate Professor in 2014 in Food Engineering and Bioprocessing at the Department of Food Science and Human Nutrition at Iowa State University. His research includes the processing of food, ingredients-function relationship, and bioprocessing fermentation for biobased products.

Dr. Partha Patra earned his doctorate degree in Materials Engineering from Indian Institute of Science, Bangalore. His research efforts focus on dealing with challenges associated with earth resource recovery and management, and in developing interfacial engineering tools to promote the application of bioreagents in personal care, pharmaceuticals, and food industries.

Mr. Rajat Sharma is a Ph.D. candidate in Food Science and Human Nutrition department at Iowa State University since 2012. He started his research on the utilization of renewable biomass sugars for microbial surfactant production. He earned a masters in Biological and Agricultural Engineering from North Carolina State University in 2012. Rajat since 2017 has also been working as a Sr. Production Engineer at Valent Biosciences in Osage Iowa, where his work is focused on managing large scale bacterial fermentation for bio-rational products for the agro and public health industry.

Dr. Christopher Green is an Associate Professor at LSU AgCenter School of Renewable Natural Resources. After completing a Ph.D. in 2007 from Southern Illinois University, Carbondale in Physiology, Dr. Green joined the LSU AgCenter faculty in 2008. Dr. Green's lab is centered within the field of applied reproductive fish physiology and endocrinology, with a focus on freshwater and estuarine aquaculture species.


References

1. Cameotra, S. S., Makkar, R. S., Kaur, J., and Mehta, S. K.: Synthesis of Biosurfactants and Their Advantages to Microorganisms and Mankind. Adv Exp Med Biol.672 (2010) 261280. PMid:20545289; 10.1007/978-1-4419-5979-9_20Suche in Google Scholar PubMed

2. Gudina, E. J., Rocha, V., Teixeira, J. A. and Rodrigues, L. R.: Antimicrobial and antiadhesive properties of a biosurfactant isolated from Lactobacillus paracasei ssp paracasei A20. Lett Appl Microbiol.50 (50) (2010) 419424. PMid:20184670; 10.1111/j.1472-765X.2010.02818.xSuche in Google Scholar PubMed

3. Nitschke, M. and Costa, S. G. V. A. O.: Biosurfactants in food industry. Trends Food Sci Tech18 (18) (2007) 252259. 10.1016/j.tifs.2007.01.002Suche in Google Scholar

4. Rodrigues, L. R. and Teixeira, J. A.: Biomedical and Therapeutic Applications of Biosurfactants. Adv Exp Med Biol672 (2010) 7587. PMid:20545275; 10.1007/978-1-4419-5979-9_6Suche in Google Scholar PubMed

5. Palmer, M. and Hatley, H.: The role of surfactants in wastewater treatment: Impact, removal and future techniques: A critical review. Water Res147 (2018) 6072. PMid:30300782; 10.1016/j.watres.2018.09.039Suche in Google Scholar PubMed

6. Cowan-Ellsberry, C., Belanger, S., Dorn, P., Dyer, S., McAvoy, D., Sanderson, H., Versteeg, D., Ferrer, D. and Stanton, K.: Environmental Safety of the Use of Major Surfactant Classes in North America. Critical Reviews in Environmental Science and Technology44 (44) (2014) 18931993. PMid:25170243; 10.1080/10739149.2013.803777Suche in Google Scholar PubMed PubMed Central

7. Sharma, R., Lamsal, B. P. and Colonna, W. J.: Pretreatment of fibrous biomass and growth of biosurfactant-producing Bacillus subtilis on biomass-derived fermentable sugars. Bioproc Biosyst Eng39 (39) (2016) 105113. PMid:26590967; 10.1007/s00449-015-1494-4Suche in Google Scholar PubMed

8. Marti, M. E., Colonna, W. J., Patra, P., Zhang, H., Green, C., Reznik, G., Pynn, M., Jarrell, K., Nyman, J. A., Somasundaran, P., Glatz, C. E. and Lamsal, B. P.: Production and characterization of microbial biosurfactants for potential use in oil-spill remediation. Enzyme Microb Tech55 (2014) 3139. PMid:24411443; 10.1016/j.enzmictec.2013.12.001Suche in Google Scholar PubMed

9. Reznik, G. O., Vishwanath, P., Pynn, M. A., Sitnik, J. M., Todd, J. J., Wu, J., Jiang, Y., Keenan, B., Castle, A. B., Haskell, R. F., Smith, T. F., Somasundaran, P. and Jarrell, K. A.: Use of sustainable chemistry to produce an acyl amino acid surfactant. Appl Microbiol Bio86 (86) (2010) 13871397. PMid:20094712; 10.1007/s00253-009-2431-8Suche in Google Scholar PubMed

10. Bustamante, M., Duran, N. and Diez, M. C.: Biosurfactants are useful tools for the bioremediation of contaminated soil: a review. J Soil Sci Plant Nut.12 (12) (2012) 667687. 10.4067/S0718-95162012005000024Suche in Google Scholar

11. Liu, J. F., Yang, J., Yang, S. Z., Ye, R. Q. and Mu, B. Z.: Effects of Different Amino Acids in Culture Media on Surfactin Variants Produced by Bacillus subtilis TD7. Appl Biochem Biotech166 (166) (2012) 20912100. PMid:22415784; 10.1007/s12010-012-9636-5Suche in Google Scholar

12. Arima, K., Kakinuma, A. and Tamura, G.: Surfactin a Crystalline Peptidelipid Surfactant Produced by Bacillus Subtilis – Isolation Characterization and Its Inhibition of Fibrin Clot Formation. Biochem Bioph Res Co31 (31) (1968) 488. 10.1016/0006-291X(68)90503-2Suche in Google Scholar

13. de Faria, A. F., Teodoro-Martinez, D. S., Barbosa, G. N. D., Vaz, B. G., Silva, I. S., Garcia, J. S., Totola, M. R., Eberlin, M. N., Grossman, M., Alves, O. L. and Durrant, L. R.: Production and structural characterization of surfactin (C-14/Leu(7)) produced by Bacillus subtilis isolate LSFM-05 grown on raw glycerol from the biodiesel industry. Process Biochem46 (46) (2010)1951–1957. 10.1016/j.procbio.2011.07.001Suche in Google Scholar

14. Liu, X. Y., Ren, B. A., Chen, M., Wang, H. B., Kokare, C. R., Zhou, X. L., Wang, J. D., Dai, H. Q., Song, F. H., Liu, M., Wang, J. A., Wang, S. J. and Zhang, L. X.: Production and characterization of a group of bioemulsifiers from the marine Bacillus velezensis strain H3. Appl Microbiol Biot, 87 (87) (2010) 18811893. PMid:20473663; 10.1007/s00253-010-2653-9Suche in Google Scholar PubMed

15. Day, J. W., Hall, C. A. S., Kemp, W. M. and Yáñez-Arancibia, A.: Estuarine Ecology. Wiley: 1989.Suche in Google Scholar

16. Shanahan, M. E. R.: A simple analysis of local wetting hysteresis on a Wilhelmy plate. Surface and Interface Analysis 1991, 17(7) (1191) 489495. 10.1002/sia.740170713Suche in Google Scholar

17. Atkinson, M. J. C. B.: Elemental composition of commercial seasalts. J Aquaricult Aquat Sci.8 (1997) 3943.Suche in Google Scholar

18. Menger, F. M., Galloway, A. L. and Chlebowski, M. E.: Surface Tension of Aqueous Amphiphiles. Langmuir21 (21) (2005), 90109012. PMid:16171324; 10.1021/la051363lSuche in Google Scholar PubMed

19. Blondina, G. J., Sowby, M. L., Ouano, M. T., Singer, M. M. and Tjeerdema, R. S.: A modified swirling flask efficacy test for oil spill dispersants. Spill Science & Technology Bulletin 1997, 4 (4) (1997) 177185.Suche in Google Scholar

20. Green, C. C., Gothreaux, C. T. and Lutz, C. G.: Reproductive Output of Gulf Killifish at Different Stocking Densities in Static Outdoor Tanks. N Am J Aquacult72 (72) (2010) 321331. 10.1577/A10-001.1Suche in Google Scholar

21. Hamilton, M. A., Russo, R. C. and Thurston, R. V.: Trimmed Spearman-Karber Method for Estimating Median Lethal Concentrations in Toxicity Bioassays. Environ Sci Technol11 (11) (1977) 714719. 10.1021/es60130a004Suche in Google Scholar

22. Abdel-Mawgoud, A. M., Aboulwafa, M. M. and Hassouna, N. A. H.: Characterization of surfactin produced by Bacillus subtilis isolate BS5. Appl Biochem Biotech150 (150) (2008) 289303. PMid:18437297; 10.1007/s12010-008-8153-zSuche in Google Scholar PubMed

23. Abdel-Mawgoud, A. M., Aboulwafa, M. M. and Hassouna, N. A. H.: Optimization of surfactin production by Bacillus subtilis isolate BS5. Appl Biochem Biotech150 (150) (2008) 305325 PMid:18682904; 10.1007/s12010-008-8155-xSuche in Google Scholar PubMed

24. Kowall, M., Vater, J., Kluge, B., Stein, T., Franke, P. and Ziessow, D.: Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105. J Colloid Interf Sci.204 (204) (1998) 18. PMid:9665760; 10.1006/jcis.1998.5558Suche in Google Scholar

25. Dhanarajan, G., Patra, P., Rangarajan, V., Somasundaran, P. and Sen, R.: Modeling and Analysis of Micellar and Microbubble Dynamics To Derive New Insights in Molecular Interactions Impacting the Packing Behavior of a Green Surfactant for Potential Engineering Implications. Acs Sustain Chem Eng.6 (6) (2018) 40464055. 10.1021/acssuschemeng.7b04428Suche in Google Scholar

26. Ooshika, Y.: A Theory of Critical Micelle Concentration of Colloidal Electrolyte Solutions. J Coll Sci Imp U Tok.9 (9) (1954) 254262. 10.1016/0095-8522(54)90020-3Suche in Google Scholar

27. Osman, M., Hoiland, H., Holmsen, H. and Ishigami, Y.: Tuning micelles of a bioactive heptapeptide biosurfactant via extrinsically induced conformational transition of surfactin assembly. J Pept Sci, 4 (4) (1998) 44945. 10.1002/(SICI)1099-1387(199811)4:7<449::AID-PSC164>3.0.CO;2-#Suche in Google Scholar

28. Peypoux, F., Bonmatin, J. M. and Wallach, J.: Recent trends in the biochemistry of surfactin. Appl Microbiol Biot51 (51) (1999) 553563. PMid:10390813; 10.1007/s002530051432Suche in Google Scholar

29. Nicolas, J. P.: Molecular dynamics simulation of surfactin molecules at the water-hexane interface. Biophys J85(3) (2003) 13771391. 10.1016/S0006-3495(03)74571-8Suche in Google Scholar

30. Vass, E., Besson, F., Majer, Z., Volpon, L. and Hollosi, M.: Ca2+-induced changes of surfactin conformation: A FTIR and circular dichroism study. Biochem Bioph Res Co282 (282) (2001) 361367. PMid:11264016; 10.1006/bbrc.2001.4469Suche in Google Scholar

31. Techtmann, S. M., Zhuang, M., Campo, P., Holder, E., Elk, M., Hazen, T. C., Conmy, R. and Santo Domingo, J. W.: Corexit 9500 Enhances Oil Biodegradation and Changes Active Bacterial Community Structure of Oil-Enriched Microcosms. Appl Environ Microbiol83 (83) (2017) e03462-16. PMid:28283527; 10.1128/AEM.03462-16Suche in Google Scholar

32. Nyankson, E., Courtney, A. O., DeCuir, M. J. and GuptaR. B.: Comparison of the Effectiveness of Solid and Solubilized Dioctyl Sodium Sulfosuccinate (DOSS) on Oil Dispersion Using the Baffled Flask Test, for Crude Oil Spill Applications. Ind Eng Chem Res53 (53) (2014) 1186211872. 10.1021/ie5017249Suche in Google Scholar

Received: 2019-06-16
Accepted: 2019-07-24
Published Online: 2019-10-01
Published in Print: 2019-09-16

© 2019, Carl Hanser Publisher, Munich

Heruntergeladen am 9.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/113.110644/html
Button zum nach oben scrollen