Stability of Emulsions and Nanoemulsions Stabilized with Biosurfactants, and their Antimicrobial Performance against Escherichia coli O157:H7 and Listeria monocytogenes
-
Kangzi Ren
, Buddhi P. Lamsal and Aubrey Mendonca
Abstract
Two novel biosurfactants – surfactin and its variant fatty acyl glutamic acid (FA-glu) – were compared with two commercial emulsifiers – lecithin, and a mixture of Tween 80 and lauric „arginate (TLA) – for formation and stability of emulsions and nano„emulsions containing cinnamaldehyde (CM). The nano„emulsions’/emulsions’ antimicrobial performance against two common foodborne pathogens Escherichia coli O157:H7 and Listeria monocytogenes was also compared. Two emulsifier concentrations (0.5% w/w and 1% w/w) and two homogenizing pressures (62.05 MPa and 124.10 MPa) were compared for emulsions droplet stability during storage for 46 days at 4°C, 25°C, and 37°C. Surfactin, FA-glu, and TLA resulted in formation of nanoemulsions at both concentrations, but lecithin did not. Droplet sizes did not change significantly during 38 days at stored temperatures for surfactin- and TLA- stabilized nano„emulsions. However, FA-glu and lecithin stabilized emulsions coalesced after Day 13 at 37°C; also, FA-glu stabilized emulsion thickened on the 38th day at 4°C. The incorporation of CM in nanoemulsions or emulsions did not lower the minimum inhibitory concentration (MIC) for two bacteria tested in broths. However, the CM nanoemulsions and emulsions showed enhanced effects in inhibiting bacterial growths at concentrations lower than MICs compared to non-emulfied CM, with more inhibition from nanoemulsions.
Kurzfassung
Zwei neuartige Biotenside (Surfactin und seine Variante Fettacylglutaminsäure (FA-Glu)) wurden mit zwei handelsüblichen Emulgatoren (Lecithin und einer Mischung aus Tween 80 und Laurinarginat (TLA)) hinsichtlich der Bildung und Stabilität von Zimt-aldehyd-(CM)-haltigen Emulsionen und Nanoemulsionen, verglichen. Die antimikrobielle Wirkung der Nanoemulsionen/Emulsionen gegen zwei verbreitete Lebensmittelpathogene, Escherichia coli O157:H7 und Listeria monocytogenes, wurde ebenfalls untersucht. Während der 46-tägigen Lagerung bei 4°C, 25°C und 37°C wurde die Tröpfchenstabilität der Emulsionen bei zwei Emulgatorenkonzentrationen (0,5 Gew.-% und 1 Gew.-%) und zwei Homogenisierungsdrücken (62,05 MPa und 124,10 MPa) bestimmt bzw. verglichen. Bei den beiden Konzentrationen bildeten sich mit Surfactin, FA-Glu und TLA Nanoemulsionen, mit Lecithin jedoch nicht. Die Tröpfchengrößen der mit Tensid- bzw. TLA-stabilisierten Nanoemulsionen veränderten sich während der 38-tägigen Lagerung bei den untersuchten Temperaturen nicht signifikant. Die mit FA-Glu und Lecithin stabilisierten, bei 37°C gelagerten Emulsionen koaleszierten jedoch nach dem 13. Tag der Lagerung; die bei 4°C mit FAglu-stabilisierte Emulsion verdickte sich am 38. Lagertag. Der Einbau von Zimtaldehyd in die Nanoemulsionen bzw. Emulsionen senkte die minimale Hemmkonzentration (MHK) für die zwei getesteten Bakterienkulturen nicht. Jedoch zeigten die CM-enthaltenen Emulsionen bzw. Nanoemulsionen im Vergleich zu den (Nano-)Emulsionen ohne CM eine stärkere Hemmung des Bakterienwachstums bei Konzentrationen, die niedriger als die MHK waren, wobei die Hemmung in den Nanoemulsionen stärker war.
References
1. Senate, U.S. US.: Senate Committee on Agriculture Nutrition and Forestry. Energy Title (Title K) of the Farm Security and Rural Investment Act of 2002. (2006). Available at https://www.congress.gov/107/plaws/publ171/PLAW-107publ171.pdf. Accessed on July 14th 2019.Search in Google Scholar
2. Banat, I. M., Franzetti, A., Gandolfi, I., Bestetti, G., Martinotti, M. G., Fracchia, L. and Marchant, R.: Microbial biosurfactants production, applications and future potential, Applied microbiology and biotechnology.87 (87) (2010), 427–444. PMid:20424836; 10.1007/s00253-010-2589-0Search in Google Scholar
3. Banat, I. M., Makkar, R. S. and Cameotra, S. S.: Potential commercial applications of microbial surfactants, Applied microbiology and biotechnology.53 (53) (2000), 495–508. PMid:10855707; 10.1007/s002530051648Search in Google Scholar
4. Ren, K. and Lamsal, B. P.: Synthesis of some glucose-fatty acid esters by lipase from Candida antarctica and their emulsion functions, Food chemistry.214 (2017), 556–563. PMid:27507510; 10.1016/j.foodchem.2016.07.031Search in Google Scholar
5. Reznik, G. O., Vishwanath, P., Pynn, M. A., Sitnik, J. M., Todd, J. J., Wu, J. and Haskell, R. F.: Use of sustainable chemistry to produce an acyl amino acid surfactant, Applied microbiology and biotechnology.86 (86) (2010), 1387–1397. PMid:20094712; 10.1007/s00253-009-2431-8Search in Google Scholar
6. Adelhorst, K., Bjokling, F., Godtfredsen, S. E. and Kirk, O.: Enzyme catalysed preparation of 6-O-acylglucopyranosides, Synthesis. (1990) 112–115. 10.1055/s-1990-26802Search in Google Scholar
7. Arcos, J., Bernabe, M. and Otero, C.: Quantitative enzymatic production of 6-O-acylglucose esters, Biotechnology and Bioengineering.57 (57) (1990), 505–509. 10.1002/(SICI)1097-0290(19980305)Search in Google Scholar
8. Degn, P., Pedersen, L. H. and Zimmermann, W.: Lipase-catalysed synthesis of glucose fatty acid esters in tert-butanol, Biotechnology letters.21 (21) (1999), 275–280. 10.1023/A:1005439801354Search in Google Scholar
9. Hayes, D. G.: Biobased surfactants: overview and industrial state-of-the-art. In D. G.Hayes, & Kitamoto, S. D. D. (Eds.), Biobased surfactants and detergents: synthesis, properties and applications. AOCS Press, Urbana, IL (2009) (pp. 3–5). 10.1016/B978-0-12-812705-6.00001-0Search in Google Scholar
10. Bustamante, M., Duran, N. and Diez, M.: Biosurfactants are useful tools for the bioremediation of contaminated soil: a review, Journal of soil science and plant nutrition.12 (12) (2012), 667–687. 10.4067/S0718-95162012005000024 Search in Google Scholar
11. Rivardo, F., Turner, R., Allegrone, G., Ceri, H. and Martinotti, M.: Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens, Applied, Appliedpplied microbiology and biotechnology.83 (83) (2009), 541–553. PMid:19343338; 10.1007/s00253-009-1987-7Search in Google Scholar PubMed
12. Sriram, M. I., Kalishwaralal, K.Deepak, V., Gracerosepat, R., Srisakthi, K. and Gurunathan, S.: Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1, Colloids, Colloidsolloids and Surfaces B: Biointerfaces.85 (85) (2011), 174–181. PMid:21458961; 10.1016/j.colsurfb.2011.02.026Search in Google Scholar PubMed
13. Chen, Y., Nummer, B. and Walsh, M.: Antilisterial activity of lactose monolaurate in milk, drinkable yogurt and cottage cheese, Letters in applied microbiology.58 (58) (2014), 156–162. PMid:24117896; 10.1111/lam.12169Search in Google Scholar PubMed
14. Habulin, M., Šabeder, S. and Knez, Ž.: Enzymatic synthesis of sugar fatty acid esters in organic solvent and in supercritical carbon dioxide and their antimicrobial activity, The, Thehe Journal of Supercritical Fluids.45 (45) (2008), 338–345. 10.1016/j.supflu.2008.01.002Search in Google Scholar
15. Zhao, H., Shao, D., Jiang, C., Shi, J., Li, Q., Huang, Q. and Jin, M.: Biological activity of lipopeptides from Bacillus, Applied microbiology and biotechnology.101 (101) (2017), 5951–5960. PMid:28685194; 10.1007/s00253-017-8396-0Search in Google Scholar PubMed
16. Whang, L. M., Liu, P. W. G., Ma, C. C. and Cheng, S. S.: Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil, Journal, Journalournal of hazardous materials.151 (151) (2008), 155–163. PMid:17614195; 10.1016/j.jhazmat.2007.05.063Search in Google Scholar PubMed
17. Volkering, F., Breure, A. and Rulkens, W.: Microbiological aspects of surfactant use for biological soil remediation, Biodegradation.8 (8) (1997), 401–417. PMid:15765586; 10.1023/A:1008291130109Search in Google Scholar
18. Hathcox, A. and Beuchat, L.: Inhibitory effects of sucrose fatty acid esters, alone and in combination with ethylenediaminetetraacetic acid and other organic acids, on viability of Escherichia coliO157: H7, Food, Foodood microbiology.13 (13) (1996), 213–225. 10.1006/fmic.1996.0027Search in Google Scholar
19. US CFR, Code of Federal Regulations, Title 21, Chapter 1, Part 101 Food Labeling. Sec. 101.22 Foods; labelling of spices, flavorings, colorings and chemical preservatives. (2011); Avavilable at: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=101.22. Accessed July 13th 2019.Search in Google Scholar
20. AsioliD., Aschemann-Witzel, J., CaputoV., VecchioR., AnnunziataA., Næs, T. and VarelaP.: Making sense of the “clean label” trends: A review of consumer food choice behavior and discussion of industry implications, Food, Foodood Research International.99 (2017), 58–71. PMid:28784520; 10.1016/j.foodres.2017.07.022Search in Google Scholar PubMed
21. Ribeiro-Santos, R., Andrade, M., Madella, D., Martinazzo, A. P., Moura, L. d. A. G., de Melo, N. R. and Sanches-Silva, A.: Revisiting an ancient spice with medicinal purposes: Cinnamon, Trends in Food science & Technology.62 (2017) 154–169. 10.1016/j.tifs.2017.02.011Search in Google Scholar
22. Jantan, I. b., Karim Moharam, B. A., Santhanam, J. and Jamal, J. A.: Correlation between chemical composition and antifungal activity of the essential oils of eight Cinnamomum species, Pharmaceutical, Pharmaceuticalharmaceutical Biology.46 (46) (2008), 406–412. 10.1080/13880200802055859Search in Google Scholar
23. Shan, B., Cai, Y.-Z., Brooks, J. D. and Corke, H.: Antibacterial properties and major bioactive components of cinnamon stick (Cinnamomum burmannii): activity against foodborne pathogenic bacteria, Journal, Journalournal of Agricultural and Food Chemistry.55 (55) (2007), 5484–5490. PMid:17567030; 10.1021/jf070424dSearch in Google Scholar PubMed
24. Chang, Y., McLandsborough, L. and McClements, D. J.: Fabrication, stability and efficacy of dual-component antimicrobial nanoemulsions: essential oil (thyme oil) and cationic surfactant (lauric arginate), Food, Foodood chemistry.172 (2015), 298–304. PMid:25442557; 10.1016/j.foodchem.2014.09.081Search in Google Scholar PubMed
25. El Kadri, H., Devanthi, P. V. P., Overton, T. W. and Gkatzionis, K.: Do oil-in-water (O/W) nano-emulsions have an effect on survival and growth of bacteria?Food Research International.101 (2017), 114–128. PMid:28941674; 10.1016/j.foodres.2017.08.064Search in Google Scholar PubMed
26. Terjung, N., Löffler, M., Gibis, M., Hinrichs, J. and Weiss, J.: Influence of droplet size on the efficacy of oil-in-water emulsions loaded with phenolic antimicrobials, Food & function.3 (3) (2012), 290–301. PMid:22183117; 10.1039/c2fo10198jSearch in Google Scholar PubMed
27. Wilkinson, S. M.: The effect of lecithin on inactivation by eugenol of Escherichia coli O157: H7. Master Thesis. University of Tennessee, Knoxville. (2015); „Available at: https://trace.tennessee.edu/cgi/viewcontent.cgi?article=4612&context=utk_gradthes. Accessed on July 14th 2019.Search in Google Scholar
28. Topuz, O. K., Özvural, E. B., Zhao, Q., Huang, Q., Chikindas, M. and Gölükçü, M.: Physical and antimicrobial properties of anise oil loaded nanoemulsions on the survival of foodborne pathogens, Food, Foodood chemistry.203 (2016), 117–123. PMid:26948596; 10.1016/j.foodchem.2016.02.051Search in Google Scholar PubMed
29. Pestana, J. M., Gennari, A., Monteiro, B. W., Lehn, D. N. and de Souza, C. F. V.: Effects of Pasteurization and Ultra-High Temperature Processes on Proximate Composition and Fatty Acid Profile in Bovine Milk, American, Americanmerican Journal of Food Technology.10 (10) (2015), 265–272. 10.3923/ajft.2015.265.272Search in Google Scholar
30. Chen, H. L., Lee, Y. S., Wei, Y. H. and Juang, R. S.: Purification of surfactin in pretreated fermentation broths by adsorptive removal of impurities, Biochemical Engineering Journal.40 (40) (2008), 452–459. 10.1016/j.bej.2008.01.020Search in Google Scholar
31. Witayaudom, P. and Klinkesorn, U.: Effect of surfactant concentration and solidification temperature on the characteristics and stability of nanostructured lipid carrier (NLC) prepared from rambutan (Nephelium lappaceum L.) kernel fat, Journal, Journalournal of Colloid and Interface Science.505 (2017), 1082–1092. PMid:28697547; 10.1016/j.jcis.2017.07.008Search in Google Scholar PubMed
32. Huang, X., Lu, Z., Bie, X., Lü, F., Zhao, H. and Yang, S.: Optimization of inactivation of endospores of Bacillus cereus by antimicrobial lipopeptides from Bacillus subtilis fmbj strains using a response surface method, Applied, Appliedpplied microbiology and biotechnology.74 (74) (2007), 454–461. PMid:17043814; 10.1007/s00253-006-0674-1Search in Google Scholar PubMed
33. Huang, X., Wei, Z., Zhao, G., Gao, X., Yang, S. and Cui, Y.: Optimization of sterilization of Escherichia coli in milk by surfactin and fengycin using a response surface method, Current, Currenturrent microbiology.56 (56) (2008), 376–381. PMid:18058172; 10.1007/s00284-007-9066-8Search in Google Scholar PubMed
34. Yang, Y., Zhao, C., Tian, G., Lu, C., Zhao, S., Bao, Y. and Zheng, J.: Effects of Preheating and Storage Temperatures on Aroma Profile and Physical Properties of Citrus-Oil Emulsions, Journal, Journalournal of Agricultural and Food Chemistry.65 (65) (2017), 7781–7789. PMid:28820942; 10.1021/acs.jafc.7b03270Search in Google Scholar
35. McClements, D.: Emulsion formation. In D.McClements (Ed.), Food emulsions principles, practices and techniques (2nd Eds ed). Boca Raton: CRC Press. (2004a) 250–265. 10.1201/9781420039436Search in Google Scholar
36. McClements, D.: Emulsion stability. In D.McClements (Ed.), Food emulsions principles, practices and techniques (2nd Edition ed). Boca Raton: CRC Press. (2004b) 290–294. 10.1201/9781420039436Search in Google Scholar
37. Walstra, P. and Smulder, P. E. A.: Emulsion formation. In Modern Aspects of Emulsion Science, Binks, B.P., Ed., The Royal Society of Chemistry, Cambridge, UK. (1998) Chap. 2. 10.1039/9781847551474Search in Google Scholar
38. Walstra, P.: Formation of emulsions. In B. P (Ed.), Encyclopedia of emulsion technology, Vol. 1. Basic Theory. New York: Marcel Dekker. (1983). 10.1002/pol.1983.130210820Search in Google Scholar
39. Desrumaux, A., Loisel, C. and Marcand, J.: April. Performances of a new high pressure homogenizer to make fine food emulsions. In Proceedings of the 8th International Congress on Engineering and Food (ICEF), Puebla, Mexico (2000), 9–13.Search in Google Scholar
40. Juttulapa, M., Piriyaprasarth, S., Takeuchi, H. and Sriamornsak, P.: Effect of high-pressure homogenization on stability of emulsions containing zein and pectin, Asian Journal of Pharmaceutical Sciences.12 (12) (2017), 21–27. 10.1016/j.ajps.2016.09.004Search in Google Scholar
41. Bibette, J.: Depletion interactions and fractionated crystallization for polydisperse emulsion purification, Journal of colloid and interface science.147 (147) (1991), 474–478. 10.1016/0021-9797(91)90181-7Search in Google Scholar
42. Bibette, J., Roux, D. and Nallet, F.: Depletion interactions and fluid-solid equilibrium in emulsions, Physical review letters.65 (65) (1990), 2470. PMid:10042556; 10.1103/PhysRevLett.65.2470Search in Google Scholar
43. Dickinson, E., Hong, S. T. and Yamamoto, Y.: Rheology of heat-set emulsion gels containing β-lactoglobulin and small-molecule surfactants, Netherlands Milk and Dairy Journal.50 (50) (1996), 199–207.Search in Google Scholar
44. McClements, D. J.: Ultrasonic determination of depletion flocculation in oil-in-water emulsions containing a non-ionic surfactant, Colloids, Colloidsolloids and Surfaces A: Physicochemical and Engineering Aspects.90 (90) (1994), 25–35. 10.1016/0927-7757(94)02881-8Search in Google Scholar
45. Hanaor, D., Michelazzi, M., Leonelli, C. and Sorrell, C. C.: The effects of „carboxylic acids on the aqueous disersion and electrophoretic deposition of ZrO 2, Journal of the European Ceramic Society.32 (32) (2012), 235–244. 10.1016/j.jeurceramsoc.2011.08.015Search in Google Scholar
46. Bhattacharjee, S.: DLS and zeta potential – What they are and what they are not?Journal of Controlled Release.235 (2016) 337–351. PMid:27297779; 10.1016/j.jconrel.2016.06.017Search in Google Scholar
47. Celus, M., Salvia-Trujillo, L., Kyomugasho, C., Maes, I., Van Loey, A. M., Grauwet, T. and Hendrickx, M. E.: Structurally modified pectin for targeted lipid antioxidant capacity in linseed/sunflower oil-in-water emulsions, Food, Foodood Chemistry.241 (2018), 86–96. PMid:28958563; 10.1016/j.foodchem.2017.08.056Search in Google Scholar
48. Li, S.: Enhancement of the antimicrobial activity of eugenol and carvacrol against Escherichia coli O157: H7 by lecithin in microbiological media and food. Master Thesis. University of Tennessee, Knoxville. (2011); Available at https://trace.tennessee.edu/cgi/viewcontent.cgi?article=2156&context=utk_gradthes. Accessed on July 14th 2019.Search in Google Scholar
49. Jackson, M. and Vinogradov, J.: The effect of brine pH, concentration and temperature on zeta potential measured in natural sandstones. Paper presented at the American Geophysical Union Fall Meeting bstracts. San Fran„cisco, USA. (2015) Abstract ID: H11A-1311.Search in Google Scholar
50. Ishigami, Y., Osman, M., Nakahara, H., Sano, Y., Ishiguro, R. and Matsumoto, M.: Significance of β-sheet formation for micellization and surface adsorption of surfactin, Colloids and Surfaces B: Biointerfaces.4 (4) (1995), 341–348. 10.1016/0927-7765(94)01183-6Search in Google Scholar
51. Li, X., Qin, Y., Liu, C., Jiang, S., Xiong, L. and Sun, Q.: Size-controlled starch nanoparticles prepared by self-assembly with different green surfactant: The effect of electrostatic repulsion or steric hindrance, Food, Foodood chemistry.199 (2016), 356–363. PMid:26775982; 10.1016/j.foodchem.2015.12.037Search in Google Scholar
52. Drapala, K. P., Auty, M. A., Mulvihill, D. M. and O’Mahony, J. A.: Influence of lecithin on the processing stability of model whey protein hydrolysate-based infant formula emulsions, International, Internationalnternational journal of dairy technology.68 (68) (2015), 322–333. 10.1111/1471-0307.12256Search in Google Scholar
53. Colbert, L.: Lecithins tailored to your emulsification needs, Cereal foods world (USA).43 (43) (1998) 686–688.Search in Google Scholar
54. Walstra, P.: Principles of emulsion formation, Chemical Engineering Science.48 (48) (1993), 333–349. 10.1016/0009-2509(93)80021-HSearch in Google Scholar
55. Ndlovu, T., Rautenbach, M., Vosloo, J. A., Khan, S. and Khan, W.: Characterisation and antimicrobial activity of biosurfactant extracts produced by Bacillus amyloliquefaciens and Pseudomonas aeruginosa isolated from a wastewater treatment plant, AMB, AMB Express.7 (7) (2017), 108. PMid:28571306; 10.1186/s13568-017-0363-8Search in Google Scholar PubMed PubMed Central
56. Gao, L., Han, J., Liu, H., Qu, X., Lu, Z. and Bie, X.: Plipastatin and surfactin „coproduction by Bacillus subtilis pB2-L and their effects on microorganisms, Antonie, Antonientonie Van Leeuwenhoek.110 (110) (2017), 1007–1018. PMid:28477175; 10.1007/s10482-017-0874-ySearch in Google Scholar PubMed
57. Brandt, A. L., Castillo, A., Harris, K. B., Keeton, J. T., Hardin, M. D. and Taylor, T. M.: Inhibition of Listeria monocytogenes by food antimicrobials applied singly and in combination, Journal of Food Science.75 (75) (2010) M557–563. PMid:21535610; 10.1111/j.1750-3841.2010.01843.xSearch in Google Scholar PubMed
58. Burt, S. A. and Reinders, R. D.: Antibacterial activity of selected plant essential oils against Escherichia coli O157: H7, Letters in applied microbiology.36 (36) (2003), 162–167. PMid:12581376; 10.1046/j.1472-765X.2003.01285.xSearch in Google Scholar
59. Xue, J., Davidson, P. M. and Zhong, Q.: Inhibition of Escherichia coli O157: H7 and Listeria monocytognes growth in milk and cantaloupe juice by thymol nanoemulsions prepared with gelatin and lecithin, Food, Foodood Control.73 (2017), 1499–1150. 10.1016/j.foodcont.2016.11.015Search in Google Scholar
© 2019, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Microbial Synthesis
- Production of Non-Toxic Biosurfactant – Surfactin – Through Microbial Fermentation of Biomass Hydrolysates for Industrial and Environmental Applications
- Characterisation Novel Biosurfactants
- Structures and Properties of Sophorolipids in Dependence of Microbial Strain, Lipid Substrate and Post-Modification
- Personal Care/Cleansing
- Amino-Acid Surfactants in Personal Cleansing (Review)
- Toward Milder Personal Care Cleansing Products: Fast ex vivo Screening of Irritating Effects of Surfactants on Skin Using Raman Microscopy
- Textile Surface Modification
- Surface Characterization of Textiles for Optimization of Functional Polymeric Nano-Capsule Attachment
- Enhanced Oil Recovery and Oil-Spill Dispersants
- Pseudo-Gemini Biosurfactants with CO2 Switchability for Enhanced Oil Recovery (EOR)
- Hydrophilic-Lipophilic-Difference (HLD) Guided Formulation of Oil Spill Dispersants with Biobased Surfactants
- Mineral Processing
- Floatability of Chalcopyrite by Glycolipid Biosurfactants as Compared to Traditional Thiol Surfactants
- Antimicrobial Properties
- Stability of Emulsions and Nanoemulsions Stabilized with Biosurfactants, and their Antimicrobial Performance against Escherichia coli O157:H7 and Listeria monocytogenes
Articles in the same Issue
- Contents/Inhalt
- Contents
- Microbial Synthesis
- Production of Non-Toxic Biosurfactant – Surfactin – Through Microbial Fermentation of Biomass Hydrolysates for Industrial and Environmental Applications
- Characterisation Novel Biosurfactants
- Structures and Properties of Sophorolipids in Dependence of Microbial Strain, Lipid Substrate and Post-Modification
- Personal Care/Cleansing
- Amino-Acid Surfactants in Personal Cleansing (Review)
- Toward Milder Personal Care Cleansing Products: Fast ex vivo Screening of Irritating Effects of Surfactants on Skin Using Raman Microscopy
- Textile Surface Modification
- Surface Characterization of Textiles for Optimization of Functional Polymeric Nano-Capsule Attachment
- Enhanced Oil Recovery and Oil-Spill Dispersants
- Pseudo-Gemini Biosurfactants with CO2 Switchability for Enhanced Oil Recovery (EOR)
- Hydrophilic-Lipophilic-Difference (HLD) Guided Formulation of Oil Spill Dispersants with Biobased Surfactants
- Mineral Processing
- Floatability of Chalcopyrite by Glycolipid Biosurfactants as Compared to Traditional Thiol Surfactants
- Antimicrobial Properties
- Stability of Emulsions and Nanoemulsions Stabilized with Biosurfactants, and their Antimicrobial Performance against Escherichia coli O157:H7 and Listeria monocytogenes