Home Pseudo-Gemini Biosurfactants with CO2 Switchability for Enhanced Oil Recovery (EOR)
Article
Licensed
Unlicensed Requires Authentication

Pseudo-Gemini Biosurfactants with CO2 Switchability for Enhanced Oil Recovery (EOR)

  • Yi Lu , Yeling Zhu , Zhenghe Xu and Qingxia Liu
Published/Copyright: October 1, 2019
Become an author with De Gruyter Brill

Abstract

Novel biosurfactants with high performance are always needed in the petroleum industry for environmental sustainability. Herein, we developed a series of biosurfactants to enhance the heavy oil recovery from Canadian oil sands. Pseudo-Gemini biosurfactants were designed to be interfacially active and CO2 switchable. The strong interfacial activity of biosurfactants promotes the liberation of heavy oil from solid substrates, which was demonstrated by the liberation visualization cell. On the other hand, the separation of heavy oil from extraction fluid was also facilitated by activating the CO2 switchability of biosurfactants. Since the efficiencies in both the heavy oil liberation and the oil-water separation were improved, the total heavy oil recovery could be significantly enhanced. Therefore, these biosurfactants are believed to be promising in the application of enhanced oil recovery from oil sands ore.

Kurzfassung

In der Erdölindustrie werden immer neue Biotenside benötigt, die sich durch hohe Leistung und ökologische Nachhaltigkeit auszeichnen. Wir haben hier eine Reihe von Biotensiden entwickelt, um die Schwerölgewinnung aus kanadischen Ölsanden zu verbessern. Pseudo-Gemini-Biotenside wurden als grenzflächenaktive und CO2-umschaltbare Verbindungen konzipiert. Die starke Grenzflächenaktivität von Biotensiden fördert die Freisetzung von Schweröl aus festen Substraten, was mit der Freisetzungsvisualisierungszelle gezeigt wurde. Zum anderen wurde auch die Abtrennung von Schweröl aus Extraktionsflüssigkeit durch die Aktivierung der CO2-Schaltbarkeit von Biotensiden erleichtert. Da die Effizienz sowohl bei der Schwerölfreisetzung als auch bei der Öl-Wasser-Trennung verbessert wurde, konnte die gesamte Schwerölgewinnung signifikant verbessert werden. Daher wird angenommen, dass diese Biotenside für die tertiäre Erdölgewinnung aus Ölsanderz vielversprechend sind.


Correspondence address, Professor Dr. Qingxia Liu, 12-281 Donadeo Innovation Centre for Engineering University of Alberta, Edmonton, AB, Canada T6G 1H9, Tel.: +1(780)492-1119, Fax: +1(780)492-2881, E-Mail:

Yi Lu is a Ph.D. student in the Department of Chemical and Materials Engineering at the University of Alberta and his research focuses on the development of stimuli-responsive surfactants for the petroleum industry as well as the fundamental understanding of related colloidal phenomena.

Yeling Zhu is a Ph.D. student in the Department of Chemical and Materials Engineering at the University of Alberta and his research focuses on the development of rapid phase separation techniques using bio-derived solvent as well as their application in hydrocarbon production from oil-bearing minerals.

Dr. Zhenghe Xu is a Teck Professor in the Department of Chemical and Materials Engineering at the University of Alberta and a Chair Professor in the School of Sciences at the Southern University of Science and Technology. His area of research includes oil sands engineering, interfacial phenomena in mineral and materials processing, advanced coal cleaning and combustion technology, emission control, nanotechnology, and molecular interactions at interfaces.

Dr. Qingxia Liu is a Professor in the Department of Chemical and Materials at the University of Alberta and the scientific director for the Canadian Centre for Clean Coal/Carbon and Mineral Processing Technologies (C5MPT). His area of research includes dispersion of high solid slurries, mineral processing, coal preparation technology, interfacial phenomena, oil sands extraction, tailing treatment, construction and building materials.


References

1. Masliyah, J., Czarnecki, J. and Xu, Z.: Handbook on theory and practice of bitumen recovery from Athabasca oil sands. Vol. I. Theoretical basis. Kingsley Knowledge Publishing (2010). 10.1002/cjce.21697Search in Google Scholar

2. Schramm, L. L., StasiukE. N. and MacKinnon, M.: Surfactants in Athabasca oil sands slurry conditioning, flotation recovery, and tailings processes. Cambridge University Press: Cambridge (2000). 10.1017/CBO9780511524844.011Search in Google Scholar

3. Cui, Z., Wu, L., Sun, M., Jiang, J. and Wang, F.: Synthesis of Dodecyl Lauroyl Benzene Sulfonate and its Application in Enhanced Oil Recovery. Tenside Surfactants Deterg.48 (2011) 408414. 10.3139/113.110147Search in Google Scholar

4. Yan, L.-M., Li, Y.-L., Cui, Z.-G., Song, B.-L., Pei, X.-M. and Jiang, J.-Z.: Performances of Guerbet Alcohol Ethoxylates for Surfactant–Polymer Flooding Free of Alkali. Energy Fuels31 (2017) 93199327. 10.1021/acs.energyfuels.7b01843Search in Google Scholar

5. Aitkulov, A., Luo, H., Lu, J. and MohantyK. K.: Alkali–Cosolvent–Polymer Flooding for Viscous Oil Recovery: 2D Evaluation. Energy Fuels31 (2017) 70157025. 10.1021/acs.energyfuels.7b00790Search in Google Scholar

6. Kumar, S., Ahmad, T., ShankhwarS. and MandalA.: Evaluation of Interfacial Properties of Aqueous Solutions of Anionic, Cationic and Non-ionic Surfactants for Application in Enhanced Oil Recovery. Tenside Surfactants Deterg.56 (2019) 138149. 10.3139/113.110607Search in Google Scholar

7. Menger, F. M. and KeiperJ. S.: Gemini Surfactants. Angew. Chem. Int. Ed. Engl.39 (2000) 19061920. 10.1002/1521-3773(20000602)39:11<1906::AID-ANIE1906>3.0.CO;2-QSearch in Google Scholar

8. Wang, L., Liu, P., Lai, X. J., Wang, J and Li, H. X.: Effect of Spacer on Surface Activity and Foam Properties of Betaine Gemini Surfactants. Tenside Surfactants Deterg.56 (2019) 222230. 10.3139/113.110615Search in Google Scholar

9. Sakai, H., Okabe, Y., Tsuchiya, K., Sakai, K. and Abe, M.: Catanionic mixtures forming gemini-like amphiphiles. J Oleo Sci60 (2011) 54955. PMid:22027019; 10.5650/jos.60.549Search in Google Scholar

10. Xu, P., Wang, Z., Xu, Z., Hao, J. and SunD.: Highly effective emulsification/demulsification with a CO2-switchable superamphiphile. J. Colloid Interface Sci.480 (2016) 198204. PMid:27442147; 10.1016/j.jcis.2016.07.023Search in Google Scholar

11. Schmaljohann, D.: Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Del. Rev.58 (2006) 16551670. PMid:17125884; 10.1016/j.addr.2006.09.020Search in Google Scholar PubMed

12. Kocak, G., Tuncer, C. and ButunV.: pH-Responsive polymers. Polym. Chem.8 (2017) 144176. 10.1039/c6py01872fSearch in Google Scholar

13. Darabi, A., Jessop, P. G. and CunninghamM. F.: CO2-responsive polymeric materials: synthesis, self-assembly, and functional applications. Chem. Soc. Rev.45 (2016) 4391436. PMid:27284587; 10.1039/c5cs00873eSearch in Google Scholar PubMed

14. Lu, H. S., Guan, X. Q., Dai, S. S. and HuangZ. Y.: Application of CO2-Triggered Switchable Surfactants to Form Emulsion with Xinjiang Heavy Oil. J. Dispersion Sci. Technol.35 (2014) 655662. 10.1080/01932691.2013.803254Search in Google Scholar

15. Lu, H. S., Guan, X. Q., WangB. G. and Huang, Z. Y.: CO2-Switchable Oil/Water Emulsion for Pipeline Transport of Heavy Oil. J. Surfactants Deterg.18 (2015) 773782. 10.1007/s11743-015-1712-8Search in Google Scholar

16. Lu, H., Zhou, Z., Jiang, J. and Huang, Z.: Carbon dioxide switchable polymer surfactant copolymerized with 2-(dimethylamino) ethyl methacrylate and butyl methacrylate as a heavy-oil emulsifier. J. Appl. Polym. Sci.132 (2015). 10.1002/app.41307Search in Google Scholar

17. Roy, D., Cambre, J. N. and SumerlinB. S.: Future perspectives and recent advances in stimuli-responsive materials. Prog. Polym. Sci.35 (2010) 278301. 10.1016/j.progpolymsci.2009.10.008Search in Google Scholar

18. Beare-Rogers, J., Dieffenbacher, A. and Holm, J.: Lexicon of lipid nutrition (IUPAC Technical Report). Pure Appl. Chem.73 (2001) 685744. 10.1351/pac200173040685Search in Google Scholar

19. Ceschia, E., Harjani, J. R., Liang, C., Ghoshouni, Z., Andrea, T., Brown, R. S. and Jessop, P. G.: Switchable anionic surfactants for the remediation of oil-contaminated sand by soil washing. RSC Adv.4 (2014) 46384645. 10.1039/c3ra47158fSearch in Google Scholar

20. Yang, G. and Zhao, J. X.: A rheological study of reverse vesicles formed by oleic acid and diethylenetriamine in cyclohexane. RSC Adv.6 (2016) 4881048815. 10.1039/c6ra05176fSearch in Google Scholar

21. du Noüy, P. L.: An interfacial tensiometer for universal use. J. Gen. Physiol.7 (1925) 625. PMid:19872165; 10.1085/jgp.7.5.625Search in Google Scholar PubMed PubMed Central

22. Dean, J. A.: Lange's handbook of chemistry. New york; London: McGraw-Hill, Inc. (1999). 10.1002/jps.2600680645Search in Google Scholar

23. Young, T.III: An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. (1805) 6587. 10.1098/rstl.1805.0005Search in Google Scholar

24. Berg, J. C.: An introduction to interfaces & colloids: the bridge to nanoscience. World Scientific (2010). 10.1142/7579Search in Google Scholar

25. Srinivasa, S., Flury, C., Afacan, A., Masliyah, J. and Xu, Z.: Study of Bitumen Liberation from Oil Sands Ores by Online Visualization. Energy Fuels26 (2012) 28832890. 10.1021/ef300170 mSearch in Google Scholar

26. Chen, T., Lin, F., Primkulov, B., He, L. and Z.Xu: Impact of salinity on warm water-based mineable oil sands processing. Can. J. Chem. Eng.95 (2017) 281289. 10.1002/cjce.22637Search in Google Scholar

27. He, L., Zhang, Y., Lin, F., Xu, Z., Li, X. and Sui, H.: Image analysis of heavy oil liberation from host rocks/sands. Can. J. Chem. Eng.93 (2015) 11261137. 10.1002/cjce.22136Search in Google Scholar

28. Zhou, C., Cheng, X, Zhao, O., Liu, S., Liu, C., Wang, J., and Huang, J.: The evolution of self-assemblies in the mixed system of oleic acid-diethylenetriamine based on the transformation of electrostatic interactions and hydrogen bonds. Soft Matter10 (2014) 802330. PMid:25159624; 10.1039/c4sm01204fSearch in Google Scholar PubMed

29. Corradini, D.: Handbook of HPLC, Second Edition. Second Edition ed. CRC Press (2010). 10.1002/0470079096Search in Google Scholar

30. Seidell, A. and Linke, W. F.: Solubilities of inorganic and metal organic compounds: a compilation of quantitative solubility data from the periodical literature. Vol. 2. van Nostrand (1941). 10.1002/ardp.192800154Search in Google Scholar

31. Zhu, Y., Yan, C., Liu, Q., Masliyah, J. and Xu, Z.: Biodiesel-Assisted Ambient Aqueous Bitumen Extraction (BA3BE) from Athabasca Oil Sands. Energy Fuels (2018). 10.1021/acs.energyfuels.8b00688Search in Google Scholar

32. He, L., Lin, F., Li, X., Sui, H. and Xu, Z.: Interfacial sciences in unconventional petroleum production: from fundamentals to applications. Chem. Soc. Rev.44 (2015) 544694. PMid:25986005; 10.1039/c5cs00102aSearch in Google Scholar PubMed

33. Masliyah, J., Zhou, Z. J., Xu, Z., Czarnecki, J. and Hamza, H.: Understanding water-based bitumen extraction from Athabasca oil sands. Can. J. Chem. Eng.82 (2004) 628654. 10.1002/cjce.5450820403Search in Google Scholar

34. He, L., Lin, F., Li, X., Xu, Z. and Sui, H.: Enhancing Bitumen Liberation by Controlling the Interfacial Tension and Viscosity Ratio through Solvent Addition. Energy Fuels28 (2014) 74037410. 10.1021/ef501963eSearch in Google Scholar

Received: 2019-06-10
Accepted: 2019-07-13
Published Online: 2019-10-01
Published in Print: 2019-09-16

© 2019, Carl Hanser Publisher, Munich

Downloaded on 20.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/113.110638/html
Scroll to top button