Startseite Hydrophilic-Lipophilic-Difference (HLD) Guided Formulation of Oil Spill Dispersants with Biobased Surfactants
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Hydrophilic-Lipophilic-Difference (HLD) Guided Formulation of Oil Spill Dispersants with Biobased Surfactants

  • Suryavarshini Sundar , Mehdi Nouraei , Thomas Latta und Edgar Acosta
Veröffentlicht/Copyright: 1. Oktober 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The large-scale use of dispersants during the BP Horizon spill revealed various risks associated with these formulations, particularly the use of volatile organic compound (VOC) solvents linked to respiratory illnesses, and the poor biodegradability of surfactants. Previous attempts at solving these issues involved formulations of lecithin and polyethylene glycol ester of sorbitan monooleate (Tween® 80) that still required the use of a volatile solvent, ethanol. In this work, the Hydrophilic-Lipophilic Difference (HLD) framework was used to develop a lecithin formulation containing food-grade lipophilic (Glycerol MonoOleate – GMO- and sorbitan monooleate – Span® 80) and hydrophilic (polyglycerol caprylate) linkers in combination with a nonvolatile and mineral oil solvent with food additive status. The HLD parameters for lecithin, linkers, and oils were used to determine the lecithin-linker formulas that yielded HLD ∼0 (the surfactant phase inversion point), reaching interfacial tensions of 10−2 mN/m, and high emulsification effectiveness with diluted bitumen. This effectiveness was close to that obtained with a simulated dispersant, and superior to the lecithin-Tween® 80-ethanol formula. The lecithin-linker system produced 4–11 μm emulsified drops, sufficiently small to enhance the biodegradability of the dispersion.

Kurzfassung

Die Verwendung von Dispergiermitteln in großem Maßstab während der BP–Horizon-Öl-Katastrophe zeigte verschiedene Risiken, die mit diesen Formulierungen verbunden waren, insbesondere die Verwendung von Lösungsmitteln mit flüchtigen organischen Verbindungen (VOC) im Zusammenhang mit Atemwegserkrankungen und der schlechten biologischen Abbaubarkeit von Tensiden. Frühere Versuche, diese Probleme zu lösen, bestanden in Formulierungen aus Lecithin und Polyethylenglykol-Sorbitanmonooleaten (Tween® 80), die immer noch die Verwendung eines flüchtigen Lösungsmittels, Ethanol, erforderten. In dieser Arbeit wurde das HLD-System (Hydrophilic-Lipophilic Difference) verwendet, um eine Lecithinformulierung zu entwickeln, die lebensmitteltaugliche, lipophile (Glycerinmonooleat (GMO) – und Sorbitanmonooleat (Span® 80)) und hydrophile (Polyglycerylcaprylat) Binder (Linker) in Kombination mit einem nichtflüchtigen und mineralölhaltigen, als Lebensmittelzusatzstoff zu verwendendes Lösungsmittel enthält. Die HLD-Parameter für Lecithin, dem Linker und die Öle wurden verwendet, um die Lecithin-Linker-Formulierungen zu ermitteln, die einen HLD∼0 (den Inversionspunkt der Tensidphase), eine Grenzflächenspannungen von 10−2 mN/m und eine hohe Emulgierwirkung mit verdünntem Bitumen erreichten. Diese Wirksamkeit war fast so hoch wie die, die mit einem simulierten Dispergiermittel erzielt wurde, und war der der Lecithin-Tween® 80-Ethanol-Formulierung überlegen. Die Tröpfchengröße im Lecithin-Linker-System betrug 4–11 μm. Die Tröpfen waren ausreichend klein, um die biologische Abbaubarkeit der Dispersion zu verbessern.


Correspondence address, Prof. Dr. Edgar Acosta, Department of chemical engineering and applied chemistry, 200 College Street Toronto, Ontario M5S 3E5, Canada, E-Mail:

Suryavarshini Sundar is a MASc candidate at the Department of Chemical Engineering and Applied Chemistry of the University of Toronto, under the supervision of Professors Ramachandran and Acosta. She received her Bachelor of Technology degree from the National Institute of Technology- Tiruchirappalli, in India. She is interested to work in the field of colloids, formulation engineering, soft particle hydrodynamics, and interfacial science.

Mehdi Nouraei received his Ph.D. in 2018 in Chemical Engineering on the formulation of lecithin-based delivery systems for food and pharmaceutical applications. He is currently a part-time Research Assistant in the Laboratory of Colloids and Formulation Engineering at University of Toronto. Dr. Nouraei is also an entrepenuer in the area of drug delivery.

Thomas (Tom) Latta is a Professional Engineer, retired from full time work, and currently a part time Research Assistant in the Laboratory of Colloids and Formulation Engineering at University of Toronto. Tom was a Principal Process Engineer for WorleyParsons/Advisian with 14 years of experience in engineering design and 24 years of experience in refinery operations. Tom received the Energy Engineer of the Year award for 2003 from the Ontario Ministry of Energy and the Arbor Award from the University of Toronto in 2017. Tom has expertise in MEG Recovery Unit (MRU) design and chemistry and has been involved in research and development projects in flow assurance as well as water management. Tom has worked on piloting solvent extraction of bitumen as well as optimizing operations for iron and copper ore mining facilities.

Edgar J. Acosta received his B.Sc. in Chemical Engineering (Summa Cum Laude) from the Universidad del Zulia (Venezuela) in 1996, and his M.Sc. and Ph.D. in Chemical Engineering from the University of Oklahoma in 2000 and 2004, respectively. He is currently a Professor of the Department of Chemical Engineering and Applied Chemistry of the University of Toronto. Dr. Acosta received the Provost Dissertation Award from the University of Oklahoma (2005), the Akzo-Nobel “Ralph Potts” award (2002), and the AOCS S&D best paper award (2004, 2008 and 2012), the AOCS Young Scientist Award (2010), and the Syncrude Innovation Award (2012). Dr. Acosta has published over 90 research articles, 8 book chapters, 2 patent applications, and has been author or coauthor of over 160 presentations at international conferences. His research encompasses the area of colloids, complex fluids and formulation engineering.


References

1. Alcaide, M., Tchigvintsev, A., Martinez-Martinez, M., Popovic, A., Reva, O. N., Lafraya, A., Bargiela, R., Nechitaylo, T., Matesanz, R., Jebbar, M., Yakimov, M., Savchenko, A., GolyshinaO., Yakunin, A., Golyshin, P., and Ferrer, M.: The MAMBA consortium. Identification and characterization of carboxyl esterases of gill chamber-associated microbiota of the deep-sea shrimp Rimicaris exoculata using functional metagenomics, Appl, Applppl. Environ. Microbiol.81 (2015) 21252136. PMid:25595762; 10.1128/AEM.03387-14Suche in Google Scholar PubMed PubMed Central

2. Goldstein, B., Osofsky, H., and Lichtveld, M.: Current concepts: The gulf oil spill, N. Engl. J. Med.364 (2011) 13341348. PMid:21470011; 10.1056/NEJMra1007197Suche in Google Scholar PubMed

3. D’Andrea, M. and Reddy, G.: Health consequences among subjects involved in gulf oil spill clean-up activities. Am. J. Med.126 (2013) 966974. PMid:24050487; 10.1016/j.amjmed.2013.05.014Suche in Google Scholar PubMed

4. Bruheim, P., Bredholt, H., and Eimhjellen, K.: Effects of surfactant mixtures, including Corexit 9527, on bacterial oxidation of acetate and alkanes in crude oil. Appl. Environ. Microbiol.65 (1999) 16581661.10.1128/AEM.65.4.1658-1661.1999Suche in Google Scholar PubMed PubMed Central

5. Kujawinski, E., Kido-Soule, M., Valentine, D., Boysen, A., Longnecker, K., and Redmond, M.: Fate of dispersants associated with the Deepwater Horizon oil spill. Environ. Sci. Technol.45 (2011) 12981306. PMid:21265576; 10.1021/es103838pSuche in Google Scholar PubMed

6. Somasundaran, P., Patra, P., Farinato, R., and Papadopoulos, K.: Oil Spill Remediation. John Wiley and Sons, New York (2014). 10.1002/9781118825662Suche in Google Scholar

7. Lubchenco, J., McNutt, M., Dreyfus, G., Murawski, S., Kennedy, D., Anastas, P., Chu, S., and Hunter, T.: Science in support of the Deepwater Horizon response. Proc. Natl. Acad. Sci. U.S.A., 109 (2012) 2021220221. PMid:23213250; 10.1073/pnas.1204729109Suche in Google Scholar PubMed PubMed Central

8. Prince, R.: Oil spill dispersants: Boon or bane?Env. Sci. Technol.49 (2015) 63766384. PMid:25938731; 10.1021/acs.est.5b00961Suche in Google Scholar PubMed

9. Riehm, D., RokkeD., PaulP., LeeH., VizankoB. and McCormickA.: Dispersion of oil into water using lecithin-Tween 80 blends: The role of spontaneous emulsification. J. Colloid Interface Sci.487 (2017) 5259. PMid:27744169; 10.1016/j.jcis.2016.10.010Suche in Google Scholar PubMed

10. Nyankson, E., Decuir, M. and Gupta, R.: Soybean lecithin as a Dispersant for Crude Oil Spills. ACS Sus. Chem. Eng.3 (2015) 920931. 10.1021/acssuschemeng.5b00027Suche in Google Scholar

11. Riehm, D., Neilsen, J., Bothun, G., John, V., Raghavan, S. and McCormickA.: Efficient dispersion of crude oil by blends of food-grade surfactants: Toward greener oil-spill treatments. Mar. Pollut. Bull.101 (2015) 9297. PMid:26589641; 10.1016/j.marpolbul.2015.11.012Suche in Google Scholar

12. Athas, J., Jun, K., McCafferty, C., Owoseni, O., John, V. and RaghavanS.: An effective dispersant for oil spills based on food-grade amphiphiles. Langmuir30 (2014) 92859294. PMid:25072867; 10.1021/la502312nSuche in Google Scholar

13. KiranS., AcostaE. and Moran, K.: Evaluating the hydrophilic-lipophilic nature of asphaltenic oils and naphthenic amphiphiles using microemulsion models. J. Colloid Interface Sci.336 (2009) 304313. PMid:19398106; 10.1016/j.jcis.2009.03.053Suche in Google Scholar

14. Acosta, E. and Quraishi, S.: Surfactant technologies for remediation of oil spills. In “Oil Spill Remediation: Colloid Chemistry-Based Principles and Solutions”. P. Somasundaran, P.Patra, R.S.Farinato, K.Papadopoulos (Editors). Wiley, New Jersey (USA). p. 317358 (2014). 10.1002/9781118825662.ch15Suche in Google Scholar

15. Rongsayamanont, W., Soonglerdsongpha, S., Khondee, N., Pinyakong, O., Tongcumpou, C., Sabatini, D. and Luepromchai, E.: Formulation of crude oil spill dispersants based on the HLD concept and using a lipopeptide biosurfactant. J. Hazard. Mater.334 (2017) 168177. PMid:28411538; 10.1016/j.jhazmat.2017.04.005Suche in Google Scholar

16. Chu, J., Cheng, Y-L., Rao, A., Nouraei, M., Zarate-Muñoz, S. and Acosta, E.: lecithin-linker formulations for self-emulsifying delivery of nutraceuticals. Int. J. Pharm.471 (2014) 92102. PMid:24810240; 10.1016/j.ijpharm.2014.05.001Suche in Google Scholar

17. Acosta, E., Nguyen, T., Witthayapanyanon, A., Harwell, J. and Sabatini, D.: Linker-based bio-compatible microemulsions. Environ. Sci. Technol.39 (2005) 127582. PMid:15787367; 10.1021/es049010gSuche in Google Scholar

18. Sabatini, D., Acosta, E. and Harwell, J.: Linker molecules in surfactant mixtures. Curr. Opin. Colloid Interface Sci.8 (2003) 316326. 10.1016/S1359-0294(03)00082-7Suche in Google Scholar

19. Nouraei, M. and Acosta, E.: Predicting solubilisation features of ternary phase diagrams of fully dilutable lecithin linker microemulsions. J. Colloid Interface Sci.495 (2017) 178190. PMid:28199856; 10.1016/j.jcis.2017.01.114Suche in Google Scholar

20. Acosta, E., Chung, O. and Xuan, X.: lecithin-linker microemulsions in transdermal delivery. J. Drug Delivery Sci. Technol., 21 (2011) 7787. 10.1016/S1773-2247(11)50007-3Suche in Google Scholar

21. Petro-Canada Lubricants. KrystolTM 20 Safety Data Sheet. Available online at: https://lubricants.petro-canada.com/api/sitecore/lubesapi/downloadresource?docID=krstl2&type=MSDS&lang=en-CA Accessed July 18, 2019.Suche in Google Scholar

22. Michel, J., Adams, E., Addassi, Y., Copeland, T., Greeley, M., James, B., Mcgee, B., Mitchelmore, C., Onishi, Y., Payne, J., Salt, D., Wrenn, B. and Walker, D. (Committee on Understanding Oil Spill Dispersants): Oil Spill Dispersants: Efficacy and Effects. National Academies Press, 2005, Washington D.C.Suche in Google Scholar

23. Kiran, S., Acosta, E. and Moran, K.: Study of Solvent-Bitumen-Water Rag Layers. Energy Fuels.23 (2009) 31393149. 10.1021/ef8008597Suche in Google Scholar

24. Zarate-Muñoz, S., Texeira De Vasconcelos, F., Myint-Myat, K., Minchom, J. and Acosta, E.: A Simplified Methodology to Measure the Characteristic Curvature (Cc) of Alkyl Ethoxylate Nonionic Surfactants. J. Surfactants Deterg.19 (2016) 249263. 10.1007/s11743-016-1787-xSuche in Google Scholar

25. Venosa, A., King, D. and Sorial, G.: The Baffled Flask Test for Dispersant Effectiveness: A Round Robin Evaluation of Reproducibility and Repeatability. Spill Sci. Technol. Bull.7 (2002) 299308. 10.1016/S1353-2561(02)00072-5Suche in Google Scholar

26. Srinivasan, R., Lu, Q., Sorial, G., Venosa, A. and Mullin, J.: Dispersant effectiveness of heavy fuel oils using baffled flask test. Environ. Eng. Sci.24 (2007) 13071320. 10.1089/ees.2006.0251Suche in Google Scholar

27. HACHcompany. 2019. Oxygen Demand, Chemical. USEPA reactor digestion method, METHOD 8000. Available online at: https://www.hach.com/asset-get.download-en.jsa?id=7639983817. Accessed June 17, 2019.Suche in Google Scholar

28. HACHcompany. 2017. Oxygen Demand, Biochemical, dilution method, METHOD 8043. Available online at: https://www.hach.com/asset-get.download-en.jsa?code=56429. Accessed June 17, 2019.Suche in Google Scholar

29. Quraishi, S, Bussmann, M. and Acosta, E.: Capillary Curves for Ex-situ Washing of Oil-Coated Particles. J Surfactants Deterg.18 (2015) 81123. 10.1007/s11743-015-1704-8Suche in Google Scholar

30. Acosta, E., Do, Ph., Harwell, J. and SabatiniD.: Linker-modified microemulsions for a variety of oils and surfactants. J. Surfactants Deterg.6 (2003) 353363. 10.1007/s11743-003-0281-2Suche in Google Scholar

31. Acosta, E. and Bhakta, A.: The HLD-NAC model for mixtures of ionic and nonionic surfactants. J. Surfactants Deterg.12 (2009) 719. 10.1007/s11743-008-1092-4Suche in Google Scholar

32. Acosta, E. and Sundar, S.: How to Formulate Biobased Surfactants Through the HLD-NAC Model. In Biobased Surfactants (Second Edition). Editor(s): Douglas G.Hayes, Daniel K.Y.Solaiman, Richard D.Ashby. AOCS Press. 2019, Pages 471510. 10.1016/B978-0-12-812705-6.00015-0Suche in Google Scholar

33. Acosta, E., Yuan, J., Bhakta, A.: The characteristic curvature of ionic surfactants. J. Surfactants Deterg.11 (2008) 145158. 10.1007/s11743-008-1065-7Suche in Google Scholar

34. Salager, J. L.: Formulation Concepts for the Emulsion Maker. In “Pharmaceutical Emulsions and Suspensions2nd Ed., Edited by Niellou, F., Marti-Mestres, G.Marcel Dekker, New York, 2000. 10.1201/b14005-3Suche in Google Scholar

35. Kiran, S. and Acosta, E.: HLD-NAC and the Formation and Stability of Emulsions Near the Phase Inversion Point. Ind. Eng. Chem. Res.54 (2015) 64676479. 10.1021/acs.iecr.5b00382Suche in Google Scholar

36. Walstra, P.: Principles of emulsion formation. Chem. Eng. Sci.48 (1993) 333349. 10.1016/0009-2509(93)80021-HSuche in Google Scholar

37. Rondón-González, M., Madariaga, L., Sadtler, V., Choplin, L. and Salager, J.-L.: Emulsion catastrophic inversion from abnormal to normal morphology. 8. Effect of formulation on the inversion produced by continuous stirring. Ind. Eng. Chem. Res.48 (2009) 29132919. 10.1021/ie801225 hSuche in Google Scholar

38. Acosta, E., Le, M., Harwell, J. and Sabatini, D.: Coalescence and solubilization kinetics in linker-modified microemulsions and related systems. Langmuir.19 (2003)566–574. 10.1021/la0261693Suche in Google Scholar

39. Mukherjee, B., Wrenn, B. and Ramachandran, P.: Relationship between size of oil droplet generated during chemical dispersion of crude oil and energy dissipation rate: Dimensionless, scaling, and experimental analysis. Chem. Eng. Sci.68 (2012) 432442. 10.1016/j.ces.2011.10.001Suche in Google Scholar

40. Shaw, J.: A microscopic view of oil slick break-up and emulsion formation in breaking waves. Spill Sci. Technol. Bull.8 (2003) 491501. 10.1016/S1353-2561(03)00061-6Suche in Google Scholar

41. Latta, T., Acosta, E., Van Teeffelen, N., Sveen, J. and Tienhaara, M.: Design considerations to minimize hydrocarbon entrainment in the aqueous phase. Proceedings of the Annual Offshore Technology Conference.1 (2018) 497582. 10.4043/28660-MSSuche in Google Scholar

42. Kaku, V., Boufadel, M. and Venosa, A.: Evaluation of mixing energy in laboratory flasks used for dispersant effectiveness testing. J. Env. Eng.132 (2006) 93101. 10.1061/(ASCE)0733-9372(2006)132:1(93)Suche in Google Scholar

43. Gilbert, E.: Biodegradability of ozonation products as a function of COD and DOC elimination by example of substituted aromatic substances. Water Res.21 (1987) 12731278. 10.1016/0043-1354(87)90180-1Suche in Google Scholar

44. Chamarro, E., Marco, A. and Esplugas, S.: Use of Fenton reagent to improve organic chemical biodegradability. Water Res.35 (2001) 10471051. 10.1016/S0043-1354(00)00342-0Suche in Google Scholar

45. Gil-Pavas, E., Correa-Sánchez, S. and Acosta, D.: Using scrap zero valent iron to replace dissolved iron in the Fenton process for textile wastewater treatment: Optimization and assessment of toxicity and biodegradability. Environ. Pollut.252 (2019) 17091718. PMid:31284213; 10.1016/j.envpol.2019.06.104Suche in Google Scholar PubMed

46. Ayandiran, T., Fawole, O. and Dahunsi, S.: Water quality assessment of bitumen polluted Oluwa River, South-Western Nigeria. Water Resour. Ind.19 (2018) 1324. 10.1016/j.wri.2017.12.002Suche in Google Scholar

47. Nikolopoulou, M. and Kalogerakis, N.: Enhanced bioremediation of crude oil utilizing lipophilic fertilizers combined with biosurfactants and molasses. Mar. Pollut. Bull.56 (2008) 18551861. PMid:18799169; 10.1016/j.marpolbul.2008.07.021Suche in Google Scholar PubMed

Received: 2019-06-21
Accepted: 2019-07-20
Published Online: 2019-10-01
Published in Print: 2019-09-16

© 2019, Carl Hanser Publisher, Munich

Heruntergeladen am 9.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/113.110643/html
Button zum nach oben scrollen