Hydrophilic-Lipophilic-Difference (HLD) Guided Formulation of Oil Spill Dispersants with Biobased Surfactants
-
Suryavarshini Sundar
Abstract
The large-scale use of dispersants during the BP Horizon spill revealed various risks associated with these formulations, particularly the use of volatile organic compound (VOC) solvents linked to respiratory illnesses, and the poor biodegradability of surfactants. Previous attempts at solving these issues involved formulations of lecithin and polyethylene glycol ester of sorbitan monooleate (Tween® 80) that still required the use of a volatile solvent, ethanol. In this work, the Hydrophilic-Lipophilic Difference (HLD) framework was used to develop a lecithin formulation containing food-grade lipophilic (Glycerol MonoOleate – GMO- and sorbitan monooleate – Span® 80) and hydrophilic (polyglycerol caprylate) linkers in combination with a nonvolatile and mineral oil solvent with food additive status. The HLD parameters for lecithin, linkers, and oils were used to determine the lecithin-linker formulas that yielded HLD ∼0 (the surfactant phase inversion point), reaching interfacial tensions of 10−2 mN/m, and high emulsification effectiveness with diluted bitumen. This effectiveness was close to that obtained with a simulated dispersant, and superior to the lecithin-Tween® 80-ethanol formula. The lecithin-linker system produced 4–11 μm emulsified drops, sufficiently small to enhance the biodegradability of the dispersion.
Kurzfassung
Die Verwendung von Dispergiermitteln in großem Maßstab während der BP–Horizon-Öl-Katastrophe zeigte verschiedene Risiken, die mit diesen Formulierungen verbunden waren, insbesondere die Verwendung von Lösungsmitteln mit flüchtigen organischen Verbindungen (VOC) im Zusammenhang mit Atemwegserkrankungen und der schlechten biologischen Abbaubarkeit von Tensiden. Frühere Versuche, diese Probleme zu lösen, bestanden in Formulierungen aus Lecithin und Polyethylenglykol-Sorbitanmonooleaten (Tween® 80), die immer noch die Verwendung eines flüchtigen Lösungsmittels, Ethanol, erforderten. In dieser Arbeit wurde das HLD-System (Hydrophilic-Lipophilic Difference) verwendet, um eine Lecithinformulierung zu entwickeln, die lebensmitteltaugliche, lipophile (Glycerinmonooleat (GMO) – und Sorbitanmonooleat (Span® 80)) und hydrophile (Polyglycerylcaprylat) Binder (Linker) in Kombination mit einem nichtflüchtigen und mineralölhaltigen, als Lebensmittelzusatzstoff zu verwendendes Lösungsmittel enthält. Die HLD-Parameter für Lecithin, dem Linker und die Öle wurden verwendet, um die Lecithin-Linker-Formulierungen zu ermitteln, die einen HLD∼0 (den Inversionspunkt der Tensidphase), eine Grenzflächenspannungen von 10−2 mN/m und eine hohe Emulgierwirkung mit verdünntem Bitumen erreichten. Diese Wirksamkeit war fast so hoch wie die, die mit einem simulierten Dispergiermittel erzielt wurde, und war der der Lecithin-Tween® 80-Ethanol-Formulierung überlegen. Die Tröpfchengröße im Lecithin-Linker-System betrug 4–11 μm. Die Tröpfen waren ausreichend klein, um die biologische Abbaubarkeit der Dispersion zu verbessern.
References
1. Alcaide, M., Tchigvintsev, A., Martinez-Martinez, M., Popovic, A., Reva, O. N., Lafraya, A., Bargiela, R., Nechitaylo, T., Matesanz, R., Jebbar, M., Yakimov, M., Savchenko, A., GolyshinaO., Yakunin, A., Golyshin, P., and Ferrer, M.: The MAMBA consortium. Identification and characterization of carboxyl esterases of gill chamber-associated microbiota of the deep-sea shrimp Rimicaris exoculata using functional metagenomics, Appl, Applppl. Environ. Microbiol.81 (2015) 2125–2136. PMid:25595762; 10.1128/AEM.03387-14Suche in Google Scholar PubMed PubMed Central
2. Goldstein, B., Osofsky, H., and Lichtveld, M.: Current concepts: The gulf oil spill, N. Engl. J. Med.364 (2011) 1334–1348. PMid:21470011; 10.1056/NEJMra1007197Suche in Google Scholar PubMed
3. D’Andrea, M. and Reddy, G.: Health consequences among subjects involved in gulf oil spill clean-up activities. Am. J. Med.126 (2013) 966–974. PMid:24050487; 10.1016/j.amjmed.2013.05.014Suche in Google Scholar PubMed
4. Bruheim, P., Bredholt, H., and Eimhjellen, K.: Effects of surfactant mixtures, including Corexit 9527, on bacterial oxidation of acetate and alkanes in crude oil. Appl. Environ. Microbiol.65 (1999) 1658–1661.10.1128/AEM.65.4.1658-1661.1999Suche in Google Scholar PubMed PubMed Central
5. Kujawinski, E., Kido-Soule, M., Valentine, D., Boysen, A., Longnecker, K., and Redmond, M.: Fate of dispersants associated with the Deepwater Horizon oil spill. Environ. Sci. Technol.45 (2011) 1298–1306. PMid:21265576; 10.1021/es103838pSuche in Google Scholar PubMed
6. Somasundaran, P., Patra, P., Farinato, R., and Papadopoulos, K.: Oil Spill Remediation. John Wiley and Sons, New York (2014). 10.1002/9781118825662Suche in Google Scholar
7. Lubchenco, J., McNutt, M., Dreyfus, G., Murawski, S., Kennedy, D., Anastas, P., Chu, S., and Hunter, T.: Science in support of the Deepwater Horizon response. Proc. Natl. Acad. Sci. U.S.A., 109 (2012) 20212–20221. PMid:23213250; 10.1073/pnas.1204729109Suche in Google Scholar PubMed PubMed Central
8. Prince, R.: Oil spill dispersants: Boon or bane?Env. Sci. Technol.49 (2015) 6376–6384. PMid:25938731; 10.1021/acs.est.5b00961Suche in Google Scholar PubMed
9. Riehm, D., RokkeD., PaulP., LeeH., VizankoB. and McCormickA.: Dispersion of oil into water using lecithin-Tween 80 blends: The role of spontaneous emulsification. J. Colloid Interface Sci.487 (2017) 52–59. PMid:27744169; 10.1016/j.jcis.2016.10.010Suche in Google Scholar PubMed
10. Nyankson, E., Decuir, M. and Gupta, R.: Soybean lecithin as a Dispersant for Crude Oil Spills. ACS Sus. Chem. Eng.3 (2015) 920–931. 10.1021/acssuschemeng.5b00027Suche in Google Scholar
11. Riehm, D., Neilsen, J., Bothun, G., John, V., Raghavan, S. and McCormickA.: Efficient dispersion of crude oil by blends of food-grade surfactants: Toward greener oil-spill treatments. Mar. Pollut. Bull.101 (2015) 92–97. PMid:26589641; 10.1016/j.marpolbul.2015.11.012Suche in Google Scholar
12. Athas, J., Jun, K., McCafferty, C., Owoseni, O., John, V. and RaghavanS.: An effective dispersant for oil spills based on food-grade amphiphiles. Langmuir30 (2014) 9285–9294. PMid:25072867; 10.1021/la502312nSuche in Google Scholar
13. KiranS., AcostaE. and Moran, K.: Evaluating the hydrophilic-lipophilic nature of asphaltenic oils and naphthenic amphiphiles using microemulsion models. J. Colloid Interface Sci.336 (2009) 304–313. PMid:19398106; 10.1016/j.jcis.2009.03.053Suche in Google Scholar
14. Acosta, E. and Quraishi, S.: Surfactant technologies for remediation of oil spills. In “Oil Spill Remediation: Colloid Chemistry-Based Principles and Solutions”. P. Somasundaran, P.Patra, R.S.Farinato, K.Papadopoulos (Editors). Wiley, New Jersey (USA). p. 317–358 (2014). 10.1002/9781118825662.ch15Suche in Google Scholar
15. Rongsayamanont, W., Soonglerdsongpha, S., Khondee, N., Pinyakong, O., Tongcumpou, C., Sabatini, D. and Luepromchai, E.: Formulation of crude oil spill dispersants based on the HLD concept and using a lipopeptide biosurfactant. J. Hazard. Mater.334 (2017) 168–177. PMid:28411538; 10.1016/j.jhazmat.2017.04.005Suche in Google Scholar
16. Chu, J., Cheng, Y-L., Rao, A., Nouraei, M., Zarate-Muñoz, S. and Acosta, E.: lecithin-linker formulations for self-emulsifying delivery of nutraceuticals. Int. J. Pharm.471 (2014) 92–102. PMid:24810240; 10.1016/j.ijpharm.2014.05.001Suche in Google Scholar
17. Acosta, E., Nguyen, T., Witthayapanyanon, A., Harwell, J. and Sabatini, D.: Linker-based bio-compatible microemulsions. Environ. Sci. Technol.39 (2005) 1275–82. PMid:15787367; 10.1021/es049010gSuche in Google Scholar
18. Sabatini, D., Acosta, E. and Harwell, J.: Linker molecules in surfactant mixtures. Curr. Opin. Colloid Interface Sci.8 (2003) 316–326. 10.1016/S1359-0294(03)00082-7Suche in Google Scholar
19. Nouraei, M. and Acosta, E.: Predicting solubilisation features of ternary phase diagrams of fully dilutable lecithin linker microemulsions. J. Colloid Interface Sci.495 (2017) 178–190. PMid:28199856; 10.1016/j.jcis.2017.01.114Suche in Google Scholar
20. Acosta, E., Chung, O. and Xuan, X.: lecithin-linker microemulsions in transdermal delivery. J. Drug Delivery Sci. Technol., 21 (2011) 77–87. 10.1016/S1773-2247(11)50007-3Suche in Google Scholar
21. Petro-Canada Lubricants. KrystolTM 20 Safety Data Sheet. Available online at: https://lubricants.petro-canada.com/api/sitecore/lubesapi/downloadresource?docID=krstl2&type=MSDS&lang=en-CA Accessed July 18, 2019.Suche in Google Scholar
22. Michel, J., Adams, E., Addassi, Y., Copeland, T., Greeley, M., James, B., Mcgee, B., Mitchelmore, C., Onishi, Y., Payne, J., Salt, D., Wrenn, B. and Walker, D. (Committee on Understanding Oil Spill Dispersants): Oil Spill Dispersants: Efficacy and Effects. National Academies Press, 2005, Washington D.C.Suche in Google Scholar
23. Kiran, S., Acosta, E. and Moran, K.: Study of Solvent-Bitumen-Water Rag Layers. Energy Fuels.23 (2009) 3139–3149. 10.1021/ef8008597Suche in Google Scholar
24. Zarate-Muñoz, S., Texeira De Vasconcelos, F., Myint-Myat, K., Minchom, J. and Acosta, E.: A Simplified Methodology to Measure the Characteristic Curvature (Cc) of Alkyl Ethoxylate Nonionic Surfactants. J. Surfactants Deterg.19 (2016) 249–263. 10.1007/s11743-016-1787-xSuche in Google Scholar
25. Venosa, A., King, D. and Sorial, G.: The Baffled Flask Test for Dispersant Effectiveness: A Round Robin Evaluation of Reproducibility and Repeatability. Spill Sci. Technol. Bull.7 (2002) 299–308. 10.1016/S1353-2561(02)00072-5Suche in Google Scholar
26. Srinivasan, R., Lu, Q., Sorial, G., Venosa, A. and Mullin, J.: Dispersant effectiveness of heavy fuel oils using baffled flask test. Environ. Eng. Sci.24 (2007) 1307–1320. 10.1089/ees.2006.0251Suche in Google Scholar
27. HACHcompany. 2019. Oxygen Demand, Chemical. USEPA reactor digestion method, METHOD 8000. Available online at: https://www.hach.com/asset-get.download-en.jsa?id=7639983817. Accessed June 17, 2019.Suche in Google Scholar
28. HACHcompany. 2017. Oxygen Demand, Biochemical, dilution method, METHOD 8043. Available online at: https://www.hach.com/asset-get.download-en.jsa?code=56429. Accessed June 17, 2019.Suche in Google Scholar
29. Quraishi, S, Bussmann, M. and Acosta, E.: Capillary Curves for Ex-situ Washing of Oil-Coated Particles. J Surfactants Deterg.18 (2015) 811–23. 10.1007/s11743-015-1704-8Suche in Google Scholar
30. Acosta, E., Do, Ph., Harwell, J. and SabatiniD.: Linker-modified microemulsions for a variety of oils and surfactants. J. Surfactants Deterg.6 (2003) 353–363. 10.1007/s11743-003-0281-2Suche in Google Scholar
31. Acosta, E. and Bhakta, A.: The HLD-NAC model for mixtures of ionic and nonionic surfactants. J. Surfactants Deterg.12 (2009) 7–19. 10.1007/s11743-008-1092-4Suche in Google Scholar
32. Acosta, E. and Sundar, S.: How to Formulate Biobased Surfactants Through the HLD-NAC Model. In Biobased Surfactants (Second Edition). Editor(s): Douglas G.Hayes, Daniel K.Y.Solaiman, Richard D.Ashby. AOCS Press. 2019, Pages 471–510. 10.1016/B978-0-12-812705-6.00015-0Suche in Google Scholar
33. Acosta, E., Yuan, J., Bhakta, A.: The characteristic curvature of ionic surfactants. J. Surfactants Deterg.11 (2008) 145–158. 10.1007/s11743-008-1065-7Suche in Google Scholar
34. Salager, J. L.: Formulation Concepts for the Emulsion Maker. In “Pharmaceutical Emulsions and Suspensions” 2nd Ed., Edited by Niellou, F., Marti-Mestres, G.Marcel Dekker, New York, 2000. 10.1201/b14005-3Suche in Google Scholar
35. Kiran, S. and Acosta, E.: HLD-NAC and the Formation and Stability of Emulsions Near the Phase Inversion Point. Ind. Eng. Chem. Res.54 (2015) 6467–6479. 10.1021/acs.iecr.5b00382Suche in Google Scholar
36. Walstra, P.: Principles of emulsion formation. Chem. Eng. Sci.48 (1993) 333–349. 10.1016/0009-2509(93)80021-HSuche in Google Scholar
37. Rondón-González, M., Madariaga, L., Sadtler, V., Choplin, L. and Salager, J.-L.: Emulsion catastrophic inversion from abnormal to normal morphology. 8. Effect of formulation on the inversion produced by continuous stirring. Ind. Eng. Chem. Res.48 (2009) 2913–2919. 10.1021/ie801225 hSuche in Google Scholar
38. Acosta, E., Le, M., Harwell, J. and Sabatini, D.: Coalescence and solubilization kinetics in linker-modified microemulsions and related systems. Langmuir.19 (2003)566–574. 10.1021/la0261693Suche in Google Scholar
39. Mukherjee, B., Wrenn, B. and Ramachandran, P.: Relationship between size of oil droplet generated during chemical dispersion of crude oil and energy dissipation rate: Dimensionless, scaling, and experimental analysis. Chem. Eng. Sci.68 (2012) 432–442. 10.1016/j.ces.2011.10.001Suche in Google Scholar
40. Shaw, J.: A microscopic view of oil slick break-up and emulsion formation in breaking waves. Spill Sci. Technol. Bull.8 (2003) 491–501. 10.1016/S1353-2561(03)00061-6Suche in Google Scholar
41. Latta, T., Acosta, E., Van Teeffelen, N., Sveen, J. and Tienhaara, M.: Design considerations to minimize hydrocarbon entrainment in the aqueous phase. Proceedings of the Annual Offshore Technology Conference.1 (2018) 497–582. 10.4043/28660-MSSuche in Google Scholar
42. Kaku, V., Boufadel, M. and Venosa, A.: Evaluation of mixing energy in laboratory flasks used for dispersant effectiveness testing. J. Env. Eng.132 (2006) 93–101. 10.1061/(ASCE)0733-9372(2006)132:1(93)Suche in Google Scholar
43. Gilbert, E.: Biodegradability of ozonation products as a function of COD and DOC elimination by example of substituted aromatic substances. Water Res.21 (1987) 1273–1278. 10.1016/0043-1354(87)90180-1Suche in Google Scholar
44. Chamarro, E., Marco, A. and Esplugas, S.: Use of Fenton reagent to improve organic chemical biodegradability. Water Res.35 (2001) 1047–1051. 10.1016/S0043-1354(00)00342-0Suche in Google Scholar
45. Gil-Pavas, E., Correa-Sánchez, S. and Acosta, D.: Using scrap zero valent iron to replace dissolved iron in the Fenton process for textile wastewater treatment: Optimization and assessment of toxicity and biodegradability. Environ. Pollut.252 (2019) 1709–1718. PMid:31284213; 10.1016/j.envpol.2019.06.104Suche in Google Scholar PubMed
46. Ayandiran, T., Fawole, O. and Dahunsi, S.: Water quality assessment of bitumen polluted Oluwa River, South-Western Nigeria. Water Resour. Ind.19 (2018) 13–24. 10.1016/j.wri.2017.12.002Suche in Google Scholar
47. Nikolopoulou, M. and Kalogerakis, N.: Enhanced bioremediation of crude oil utilizing lipophilic fertilizers combined with biosurfactants and molasses. Mar. Pollut. Bull.56 (2008) 1855–1861. PMid:18799169; 10.1016/j.marpolbul.2008.07.021Suche in Google Scholar PubMed
© 2019, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Microbial Synthesis
- Production of Non-Toxic Biosurfactant – Surfactin – Through Microbial Fermentation of Biomass Hydrolysates for Industrial and Environmental Applications
- Characterisation Novel Biosurfactants
- Structures and Properties of Sophorolipids in Dependence of Microbial Strain, Lipid Substrate and Post-Modification
- Personal Care/Cleansing
- Amino-Acid Surfactants in Personal Cleansing (Review)
- Toward Milder Personal Care Cleansing Products: Fast ex vivo Screening of Irritating Effects of Surfactants on Skin Using Raman Microscopy
- Textile Surface Modification
- Surface Characterization of Textiles for Optimization of Functional Polymeric Nano-Capsule Attachment
- Enhanced Oil Recovery and Oil-Spill Dispersants
- Pseudo-Gemini Biosurfactants with CO2 Switchability for Enhanced Oil Recovery (EOR)
- Hydrophilic-Lipophilic-Difference (HLD) Guided Formulation of Oil Spill Dispersants with Biobased Surfactants
- Mineral Processing
- Floatability of Chalcopyrite by Glycolipid Biosurfactants as Compared to Traditional Thiol Surfactants
- Antimicrobial Properties
- Stability of Emulsions and Nanoemulsions Stabilized with Biosurfactants, and their Antimicrobial Performance against Escherichia coli O157:H7 and Listeria monocytogenes
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Microbial Synthesis
- Production of Non-Toxic Biosurfactant – Surfactin – Through Microbial Fermentation of Biomass Hydrolysates for Industrial and Environmental Applications
- Characterisation Novel Biosurfactants
- Structures and Properties of Sophorolipids in Dependence of Microbial Strain, Lipid Substrate and Post-Modification
- Personal Care/Cleansing
- Amino-Acid Surfactants in Personal Cleansing (Review)
- Toward Milder Personal Care Cleansing Products: Fast ex vivo Screening of Irritating Effects of Surfactants on Skin Using Raman Microscopy
- Textile Surface Modification
- Surface Characterization of Textiles for Optimization of Functional Polymeric Nano-Capsule Attachment
- Enhanced Oil Recovery and Oil-Spill Dispersants
- Pseudo-Gemini Biosurfactants with CO2 Switchability for Enhanced Oil Recovery (EOR)
- Hydrophilic-Lipophilic-Difference (HLD) Guided Formulation of Oil Spill Dispersants with Biobased Surfactants
- Mineral Processing
- Floatability of Chalcopyrite by Glycolipid Biosurfactants as Compared to Traditional Thiol Surfactants
- Antimicrobial Properties
- Stability of Emulsions and Nanoemulsions Stabilized with Biosurfactants, and their Antimicrobial Performance against Escherichia coli O157:H7 and Listeria monocytogenes