Floatability of Chalcopyrite by Glycolipid Biosurfactants as Compared to Traditional Thiol Surfactants
-
Priyanka Dhar
Abstract
To reduce environmental and occupational impact of flotation reagents, there is an emerging need to find greener reagents for sulphide mineral flotation. This study presents a comparison of the interactions of chalcopyrite with three glycolipid biosurfactants (sophorolipid, glucolipid and glucoside) and three traditional thiol surfactants (collectors) to assess the potential of the biosurfactants as collectors. The mineral-surfactant interactions are studied using adsorption isotherm, zeta potential, FTIR spectroscopy and flotation tests. We find that glycolipid biosurfactants hold high potential as collectors for flotation of copper sulphides.
Kurzfassung
Um die Auswirkungen von Flotationsreagenzien auf die Umwelt und den Arbeitsplatz zu verringern, besteht ein wachsender Bedarf an umweltfreundlicheren Reagenzien für die Flotation von Sulfidmineralien. Diese Studie präsentiert einen Vergleich der Wechselwirkungen von Chalkopyrit mit drei Glycolipid-Biotensiden (Sophorolipid, Glucolipid und Glucosid) und drei herkömmlichen Thiol-Tensiden (Kollektoren), mit dem Ziel, das Potenzial der Biotenside als Kollektoren zu bewerten. Die Wechselwirkungen zwischen Mineralien und Tensiden werden mit der Adsorptionsisotherme, dem Zeta-Potential, der FTIR-Spektroskopie und mit Flotationstests untersucht. Wir stellen fest, dass Glycolipid-Biotenside ein hohes Potenzial als Sammler für die Flotation von Kupfersulfiden aufweisen.
References
1. Wark, I., Jones, M. and Woodcock, J.: Principles of mineral flotation: The Wark Symposium, Symposia series (Australasian Institute of Mining and Metallurgy). Parkville, Vic: Australasian Institute of Mining and Metallurgy, Vol, Volol.40, (1984).Suche in Google Scholar
2. Chowdhry, M.: Theoretical Study on Reactivity of Different Sulfide Collectors and Their Binding Affinity toward Cu(II), Zn(II) and Pb(II) Ions. (2016). Web.Suche in Google Scholar
3. Rao, S. R.: Xanthate and Related compounds. Dekker, New York, Marcel Dekker, 1971. Print.Suche in Google Scholar
4. Forssberg, K. S. E.: Flotation of Sulphide Minerals 1990. Amsterdam: Elsevier, 1991. Print.Suche in Google Scholar
5. Güler, T., Hicyilmaz, C., Gokagac, G. and Emekci, Z.: Adsorption of dithiophosphate and dithiophosphinate on chalcopyrite. Miner. Eng.19 (2006) 62–71. 10.1016/j.mineng.2005.06.007Suche in Google Scholar
6. Grano, S. R., Cnossen, H., Skinner, W., Prestidge, C. A. and Ralston, J.: Surface modifications in the chalcopyrite-sulphite ion system, II. Dithiophosphate collector adsorption study. Int. J. Miner. Process.50 (1997) 27–45. 10.1016/S0301-7516(97)00003-3Suche in Google Scholar
7. Dhar, P., Thornhill, M. and Kota, H. R.: Investigation of Copper Recovery from a New Copper Deposit (Nussir) in Northern-Norway: Thionocarbamates and Xanthate-Thionocarbamate Blend as Collectors. Minerals 2019, 9, 118. 10.3390/min9020118Suche in Google Scholar
8. Fairthorne, G.: The Interaction of Thionocarbamate and Thiourea Collectors with Sulfide Mineral Surfaces. Ph.D. Thesis, University of South Australia, Adelaide, Australia, 1996.Suche in Google Scholar
9. Baccile, N., Cuvier, A.-S., Prévost, S., Stevens, C., Delbeke, E., Berton, J., Soetaert, W., Van Bogaert, I. and Roelants, S.: Self-assembly Mechanism of pH-responsive Glycolipids. Micelles, Fibers, Vesicles, and Bilayers. Langmuir32 (32) (2016) 10881–10894. PMid:27730816; 10.1021/acs.langmuir.6b02337Suche in Google Scholar
10. Kosaric, N., Vardar Sukan, F.: Biosurfactants. Production and Utilization-Processes, Technologies, and Economics. 1st ed.CRC Press Inc – M.U.A., 2014. PMid:24659677; 10.1201/b17599Suche in Google Scholar
11. Liu, Q. and Laskowski, J. S.: The interactions between dextrin and metal hydroxides in aqueous solutions Journal of Colloid and Interface Science, 130 (1989), 101–111. 10.1016/0021-9797(89)90081-7Suche in Google Scholar
12. Zhang, L., Somasundaran, P., Singh, S. K., Felse, A. P. and Gross, R.: Synthesis and Interfacial Properties of Sophorolipid Derivatives. Colloids and Surfaces A: Physicochemical and Engineering Aspects240 (240) (2004) 75–82. 10.1016/j.colsurfa.2004.02.016Suche in Google Scholar
13. Chander, S. and Fuerstenau, D. W.: The effect of potassium diethyl dithiophosphate on the electrochemical properties of platinum, copper and copper sulphide in aqueous solution. J. Electroanal. Chem. Interfac. Chem.56 (1974) 217–247. 10.1016/S0022-0728(74)80330-XSuche in Google Scholar
14. Wang, Qian, Xu, Dai, and Xiao, Fu: Selective chalcopyrite flotation from pyrite with glycerine-xanthate as depressant. Minerals Engineering, 74 (2015) 86–90. 10.1016/j.mineng.2015.01.008Suche in Google Scholar
15. Ackerman, P. K., Harris, G. H., Klimpel, R. R. and Aplan, F. F.: Evaluation of flotation collectors for copper sulphides and pyrite, I. Common sulfhydryl collectors. Int. J. Miner. Proc.21 (1987) 105–140. 10.1016/0301-7516(87)90009-3Suche in Google Scholar
16. Kelebek, S. and Smith, G. W.: Electro-kinetic properties of a galena and chalcopyrite with a collectorless flotation behaviour. Colloids Surf.40 (1989) 137. 10.1016/0166-6622(89)80014-9Suche in Google Scholar
17. Fullston, D., Fornasiero, D. and Ralston, J.: Zeta potential study of the oxidation of copper sulphide minerals. Colloids Surf. A Physicochem. Eng. Aspects146 (1999) 113–121. 10.1016/S0927-7757(98)00725-0Suche in Google Scholar
18. Nagaraj, M. E., Lewellyn, S. S., Wang, P. A. and Scanlon, M. J.: In Proceedings of the International Mineral Processing Congress, Stockholm, Sweden, 5–10 June 1988.Suche in Google Scholar
19. Mustafa, S., Hamid, A. and Naeem, A.: Xanthate adsorption studies on chalcopyrite ore. Int. J. Miner. Process. (2004) 74 (1–4), 317–325. 10.1016/j.minpro.2004.04.006Suche in Google Scholar
20. Raju, G. B. and Forsling, W.: Adsorption of Thiol Collectors on Chalcopyrite. Journal of Surface Science and Technology, 13 (13) (1997) 25–37.Suche in Google Scholar
21. Dhar, P., Thornhill, M., Roelants, S., Soetaert, W. and Kota, H. R.: Novel biosurfactants in Flotation, SME meeting, Colorado, Denver (2019).Suche in Google Scholar
22. Kačuráková and Mathlouthi: FTIR and Laser-Raman Spectra of Oligosaccharides in Water: Characterization of the Glycosidic Bond. Carbohydrate Research284 (284) (1996): 145–57. 10.1016/0008-6215(95)00412-2Suche in Google Scholar
23. Zhong, H., Huang, Z., Zhao, G., Wang, S., Liu, G. and Cao, Z.: The collecting performance and interaction mechanism of sodium diisobutyl dithiophosphinate in sulfide minerals flotation. J. Mater. Res. Technol.4 (2015) 151–161. 10.1016/j.jmrt.2014.12.003Suche in Google Scholar
© 2019, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Microbial Synthesis
- Production of Non-Toxic Biosurfactant – Surfactin – Through Microbial Fermentation of Biomass Hydrolysates for Industrial and Environmental Applications
- Characterisation Novel Biosurfactants
- Structures and Properties of Sophorolipids in Dependence of Microbial Strain, Lipid Substrate and Post-Modification
- Personal Care/Cleansing
- Amino-Acid Surfactants in Personal Cleansing (Review)
- Toward Milder Personal Care Cleansing Products: Fast ex vivo Screening of Irritating Effects of Surfactants on Skin Using Raman Microscopy
- Textile Surface Modification
- Surface Characterization of Textiles for Optimization of Functional Polymeric Nano-Capsule Attachment
- Enhanced Oil Recovery and Oil-Spill Dispersants
- Pseudo-Gemini Biosurfactants with CO2 Switchability for Enhanced Oil Recovery (EOR)
- Hydrophilic-Lipophilic-Difference (HLD) Guided Formulation of Oil Spill Dispersants with Biobased Surfactants
- Mineral Processing
- Floatability of Chalcopyrite by Glycolipid Biosurfactants as Compared to Traditional Thiol Surfactants
- Antimicrobial Properties
- Stability of Emulsions and Nanoemulsions Stabilized with Biosurfactants, and their Antimicrobial Performance against Escherichia coli O157:H7 and Listeria monocytogenes
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Microbial Synthesis
- Production of Non-Toxic Biosurfactant – Surfactin – Through Microbial Fermentation of Biomass Hydrolysates for Industrial and Environmental Applications
- Characterisation Novel Biosurfactants
- Structures and Properties of Sophorolipids in Dependence of Microbial Strain, Lipid Substrate and Post-Modification
- Personal Care/Cleansing
- Amino-Acid Surfactants in Personal Cleansing (Review)
- Toward Milder Personal Care Cleansing Products: Fast ex vivo Screening of Irritating Effects of Surfactants on Skin Using Raman Microscopy
- Textile Surface Modification
- Surface Characterization of Textiles for Optimization of Functional Polymeric Nano-Capsule Attachment
- Enhanced Oil Recovery and Oil-Spill Dispersants
- Pseudo-Gemini Biosurfactants with CO2 Switchability for Enhanced Oil Recovery (EOR)
- Hydrophilic-Lipophilic-Difference (HLD) Guided Formulation of Oil Spill Dispersants with Biobased Surfactants
- Mineral Processing
- Floatability of Chalcopyrite by Glycolipid Biosurfactants as Compared to Traditional Thiol Surfactants
- Antimicrobial Properties
- Stability of Emulsions and Nanoemulsions Stabilized with Biosurfactants, and their Antimicrobial Performance against Escherichia coli O157:H7 and Listeria monocytogenes