Startseite Toward Milder Personal Care Cleansing Products: Fast ex vivo Screening of Irritating Effects of Surfactants on Skin Using Raman Microscopy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Toward Milder Personal Care Cleansing Products: Fast ex vivo Screening of Irritating Effects of Surfactants on Skin Using Raman Microscopy

  • Irina V. Chernyshova , Brajesh Jha , Aixing Fan , Hongwei Shen , Derek Doowon Kim und Ponisseril Somasundaran
Veröffentlicht/Copyright: 1. Oktober 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We report a novel Raman technique that allows fast and reliable ex vivo assessment of the irritability of personal care cleansing products to the skin in terms of the molecular-level effects such as retention of water by corneocytes, change in the packing order and content of intercellular lipids, and the structure of keratin. We test this technique for the single surfactants (dodecyl glucoside, sodium dodecyl sulfate, sodium cocoyl glycinate, lauramidopropyl betaine) that are typically used in personal care, as well as on three types of commercial soap bars (“superfat”, “syndet”, and “combar”). We find that soaking of the skin for prolonged time in pure water can cause unfolding of keratin, which is commonly considered as a signature of “harshness” when dealing with the surfactant formulations. Moreover, molecular-level signatures of irritability of the test surfactants and soaps at brief (10 min) exposure times do not follow the trend expected from their critical micelle concentrations (CMC) and collagen swelling. In particular, dodecyl glucoside has positive impact on the barrier properties of the stratum corneum (SC) and apparent detergency properties (solubilizes lipids without affecting their packing order). We also find that two qualitatively different soap bars (“superfat” and “syndet”) are similarly mild under the conditions studied, while the “combar” soap has detergency properties. These results demonstrate that to improve methodology of predicting irritability of a surfactant-based formulation, we need to study more systematically the molecular-level responses of the SC to exposure.

Kurzfassung

Wir berichten über eine neuartige Raman-Technik, die eine schnelle und zuverlässige Ex-vivo-Beurteilung der Hautreizung durch Reinigungsprodukte für Körperpflege erlaubt, insbesondere im Hinblick auf die Auswirkungen auf molekularer Ebene wie Wassereinlagerungen durch Korneozyten, Änderungen der Packungsordnung und des Gehalt an interzellularen Lipiden und die Struktur des Keratins. Wir untersuchen diese Technik sowohl für die einzelnen Tenside (Dodecylglucosid, Natriumdodecylsulfat, Natriumcocoylglycinat, Lauramidopropylbetain), die typischerweise in der Körperpflege verwendet werden, als auch für drei Typen handelsüblicher Seifen („superfat“-, „syndet“- und „combar“-Seife). Wir stellen fest, dass das Einweichen der Haut über einen längeren Zeitraum in reinem Wasser zur Entfaltung des Keratins führen kann, was häufig beim Umgang mit Tensidformulierungen als Rauigkeitszeichen angesehen wird. Darüber hinaus folgen bei kurzen Einwirkungszeiten (10 Minuten) die Reizfähigkeit der Testtenside und Seifen auf der molekularen Ebene nicht dem Trend, der aufgrund ihrer kritischen Mizellenbildungskonzentration (CMC) und Kollagenquellung erwartet wird. Insbesondere hat Dodecylglucosid einen positiven Einfluss auf die Barriereeigenschaften des Stratum Corneum (SC) und die offensichtlichen Detergenzeigenschaften (Es löst Lipide auf, ohne ihre Packungsordnung zu beeinflussen). Wir stellen auch fest, dass zwei qualitativ unterschiedliche Seifenstücke („Superfett“ und „Syndet“) unter den untersuchten Bedingungen ähnlich mild sind, während die „Combar“-Seife waschaktive Eigenschaften aufweist. Diese Ergebnisse zeigen, dass wir die molekularen Antworten des SC auf die Exposition systematischer untersuchen müssen, um die Methodik zur Vorhersage der Reizfähigkeit von tensid-basierten Formulierungen zu verbessern.


Correspondence address, Dr. Irina V. Chernyshova, Department of Earth and Environmental Engineering, Columbia University, New York, 10027 NY, USA, E-Mail:

Irina Chernyshova is an Associate Research Scientist in the Department of Earth and Environmental Engineering, Columbia University. Her main area of interests includes the development of green surfactant and polymer formulations for various applications including personal care. She holds PhD in intermolecular interactions and spectroscopy from St. Petersburg State University, Russia. Before Columbia University, she was an Associate Professor in the Department of Medical Physics and Bioengineering, Peter the Great St. Petersburg Polytechnic University, Russia. She has authored a monograph on infrared spectroscopy and more than 50 papers in peer-reviewed journals.

Brajesh Jha has a Ph.D. in Surfactant Chemistry from the University of Pune in India. At present, he is a Senior Technical Associate at Colgate-Palmolive Global Technology Center (GTC) in Piscataway, New Jersey, USA. His research interests are surfactants, interfacial and colloidal science and their application in personal and home care industries. He is also a recipient of prestigious Shaw Mudge and Des Goddard awards for his contributions to emulsion and colloid science.

Aixing Fan is a Manager of Technology, Personal Care Early Research, at Colgate-Palmolive Global Technology Center (GTC) in Piscataway, New Jersey, USA. Before joining Colgate-Palmolive, she worked as a Staff Chemist at DuPont. She holds PhD in the field of Colloid and Surface Chemistry from Columbia University in the City of New York and Masters from Peking University.

Hongwei Shen is a Manager of Technology at Colgate Palmolive Company and leads a group of scientists focusing on the surfactant-based formulation research and innovation. He holds PhD in chemistry from McGill University with a focus on polymer chemistry. He has published numerous scientific papers in peer-reviewed journals and holds multiple patents.

Derek Kim is a R&D scientist with a demonstrated history of working with surfactants, proteins/enzymes, polymers, particles, colloidal systems and analytical techniques. He is a graduate of Columbia University and the Cooper Union in Earth & Environmental Engineering and Chemical Engineering, respectively, and is currently a R&D Research Scientist at Reckitt Benckiser (RB).

Ponisseril Somasundaran is the La von Duddleson Krumb Professor at Columbia University and Director of NSF/IUCRC Center for Particulate and Surfactant Systems. His main expertise includes colloid and interface science and surfactants. He is the author/editor of fifteen books and over 700 scientific publications and patents. He is a Fellow of the American Institute of Chemical Engineers and a member of the US National Academy of Engineering and the corresponding academies of China, India, Russia, the Balkans, and the Royal Society of Canada.


References

1. Misra, M., Ananthapadmanabhan, K. P., Hoyberg, K., Gursky, R. P., Prowell, S. and Aronson, M.: Correlation between surfactant-induced ultrastructural changes in epidermis and transepidermal water loss, Journal of the Society of Cosmetic Chemists (48) (1997) (219234).Suche in Google Scholar

2. Ananthapadmanabhan, K. P., Moore, D. J., Subramanyan, K., Misra, M. and Meyer, F.: Cleansing without compromise: the impact of cleansers on the skin barrier and the technology of mild cleansing, Dermatologic, Dermatologicermatologic therapy, (17 Suppl 1) (2004) (1625). PMid:14728695; 10.1111/j.1396-0296.2004.04S1002.xSuche in Google Scholar PubMed

3. Walters, R. M., Mao, G., Gunn, E. T. and Hornby, S.: Cleansing Formulations That Respect Skin Barrier Integrity, Dermatology Research and Practice, (2012) (2012) (9). PMid:22927835; 10.1155/2012/495917Suche in Google Scholar PubMed PubMed Central

4. Cornwell, P. A.: A review of shampoo surfactant technology: consumer benefits, raw materials and recent developments, International Journal of Cosmetic Science, (40) (2018) (1630). PMid:29095493; 10.1111/ics.12439Suche in Google Scholar PubMed

5. Bouwstra, J. A. and Ponec, M.: The skin barrier in healthy and diseased state, Biochimica Et Biophysica Acta-Biomembranes, (1758) (2006) (2080–2095). PMid:16945325; 10.1016/j.bbamem.2006.06.021Suche in Google Scholar PubMed

6. Seweryn, A.: Interactions between surfactants and the skin – Theory and practice, Advances in Colloid and Interface Science, (256) (2018) (242255). PMid:29685575; 10.1016/j.cis.2018.04.002Suche in Google Scholar PubMed

7. Choe, C., Schleusener, J., Lademann, J. and Darvin, M. E.: Keratin-water-NMF interaction as a three layer model in the human stratum corneum using in vivo confocal Raman microscopy, Scientific, Scientificcientific Reports, (7) (2017) (15900). PMid:29162917; 10.1038/s41598-017-16202-xSuche in Google Scholar PubMed PubMed Central

8. Mojumdar, E. H., Pham, Q. D., Topgaard, D. and Sparr, E.: Skin hydration: interplay between molecular dynamics, structure and water uptake in the stratum corneum, Scientific Reports, (7) (2017). PMid:29146971; 10.1038/s41598-017-15921-5Suche in Google Scholar PubMed PubMed Central

9. O’LenickJr., A. J.: Surfactants: Strategic Personal Care Ingredients. (Allured Publishing Corporation, 2014).Suche in Google Scholar

10. Goffin, V., Paye, M. and Pierard, G. E.: Comparison of in-vitro predictive tests for irritation induced by anionic surfactants, Contact Dermatitis, (33) (1995) (3841). PMid:7493460; 10.1111/j.1600-0536.1995.tb00445.xSuche in Google Scholar PubMed

11. Lemery, E., Briancon, S., Chevalier, Y., Oddos, T., Gohier, A., Boyron, O. and Bolzinger, M. A.: Surfactants have multi-fold effects on skin barrier function, European Journal of Dermatology, (25) (2015) (424435). 10.1684/ejd.2015.2587Suche in Google Scholar PubMed

12. Morris, S. A. V., Thompson, R. T., Glenn, R. W., Ananthapadmanabhan, K. P. and Kasting, G. B.: Mechanisms of anionic surfactant penetration into human skin: Investigating monomer, micelle and submicellar aggregate penetration theories, International, Internationalnternational Journal of Cosmetic Science, (41) (2019) (5566). PMid:30636015; 10.1111/ics.12511Suche in Google Scholar PubMed

13. Gniadecka, M., Nielsen, O. F., Christensen, D. H. and Wulf, H. C.: Structure of water, proteins, and lipids in intact human skin, hair, and nail, Journal of Investigative Dermatology, (110) (1998) (393398). PMid:9540981; 10.1046/j.1523-1747.1998.00146.xSuche in Google Scholar

14. Franzen, L. and Windbergs, M.: Applications of Raman spectroscopy in skin research – From skin physiology and diagnosis up to risk assessment and dermal drug delivery, Advanced, Advanceddvanced Drug Delivery Reviews, (89) (2015) (91104). PMid:25868454; 10.1016/j.addr.2015.04.002Suche in Google Scholar

15. Vyumvuhore, R., Tfayli, A., Duplan, H., Delalleau, A., Manfait, M. and Baillet-Guffroy, A.: Effects of atmospheric relative humidity on Stratum Corneum structure at the molecular level: ex vivo Raman spectroscopy analysis, Analyst, Analystnalyst, (138) (2013) (4103–4111). PMid:23719417; 10.1039/c3an00716bSuche in Google Scholar

16. Caspers, P. J., Bruining, H. A., Puppels, G. J., Lucassen, G. W. and Carter, E. A.: In Vivo Confocal Raman Microspectroscopy of the Skin: Noninvasive Determination of Molecular Concentration Profiles, Journal, Journalournal of Investigative Dermatology, (116) (2001) (434442). PMid:11231318; 10.1046/j.1523-1747.2001.01258.xSuche in Google Scholar

17. Albèr, C., Brandner, B. D., Björklund, S., Billsten, P., Corkery, R. W. and Engblom, J.: Effects of water gradients and use of urea on skin ultrastructure evaluated by confocal Raman microspectroscopy, Biochimica, Biochimicaiochimica et Biophysica Acta (BBA) – Biomembranes, (1828) (2013) (2470–2478). PMid:23791705; 10.1016/j.bbamem.2013.06.011Suche in Google Scholar

18. Choe, C., Schleusener, J., Lademann, J. and Darvin, M. E.: Age related depth profiles of human Stratum Corneum barrier-related molecular parameters by confocal Raman microscopy in vivo, Mechanisms, Mechanismsechanisms of Ageing and Development, (172) (2018) (612). PMid:28844969; 10.1016/j.mad.2017.08.011Suche in Google Scholar

19. Endo, K., Ozawa, T., Masui, T., Ichihashi, T., Yanagawa, K., Miyaki, M., Matsuo, K. and Yamada, S.: Advantage of Sodium Polyoxyethylene Lauryl Ether Carboxylate as a Mild Cleansing Agent. Part 2: Effects on Skin Functions and Conditions, Journal, Journalournal of Surfactants and Detergents, (21) (2018) (777788). 10.1002/jsde.12177Suche in Google Scholar

20. Huizinga, A., Bot, A. C. C., Demul, F. F. M., Vrensen, G. and Greve, J.: Local variation in absolute water-content of human and rabbit eye lenses measured by raman microspectroscopy, Experimental, Experimentalxperimental Eye Research, (48) (1989) (487496). 10.1016/0014-4835(89)90032-8Suche in Google Scholar

21. Leikin, S., Parsegian, V. A., Yang, W. H. and Walrafen, G. E.: Raman spectral evidence for hydration forces between collagen triple helices, Proceedings of the National Academy of Sciences of the United States of America, (94) (1997) (1131211317). PMid:9326606; 10.1073/pnas.94.21.11312Suche in Google Scholar PubMed PubMed Central

22. Narasimha Murthy, S. and Shivakumar, H. N.: in Handbook of Non-Invasive Drug Delivery Systems (ed Vitthal S.Kulkarni) 136 (William Andrew Publishing, 2010). 10.1016/B978-0-8155-2025-2.10001-0Suche in Google Scholar

23. Yanase, K. and Hatta, I.: Disruption of human stratum corneum lipid structure by sodium dodecyl sulphate, International Journal of Cosmetic Science, (40) (2018) (4449). PMid:28922453; 10.1111/ics.12430Suche in Google Scholar PubMed

24. Elmahjoubi, E., Frum, Y., Eccleston, G. M., Wilkinson, S. C. and Meidan, V. M.: Transepidermal water loss for probing full-thickness skin barrier function: Correlation with tritiated water flux, sensitivity to punctures and diverse surfactant exposures, Toxicology, Toxicologyoxicology in Vitro, (23) (2009) (14291435). PMid:19577629; 10.1016/j.tiv.2009.06.030Suche in Google Scholar PubMed

25. Kubota, K., Yamasaki, E., Yang, J. and Takata, S.: Evaluation of anionic surfactants effects on the skin barrier function based on skin permeability AU – Okasaka, Mana, Pharmaceutical, Pharmaceuticalharmaceutical Development and Technology, (24) (2019) (99104). PMid:29323614; 10.1080/10837450.2018.1425885Suche in Google Scholar PubMed

26. Blakehaskins, J. C., Scala, D., Rhein, L. D. and Robbins, C. R.: Predicting surfactant irritation from the swelling response of a collagen film, Journal of the Society of Cosmetic Chemists, (37) (1986) (199210).Suche in Google Scholar

27. Zhang, G.-J., Chai, C.-X., Tan, T.-T., Xu, B.-C., Zhou, Y.-W., Liu, H.-Q., Zhao, L. and Wang, N.: Green Synthesis and Surface Properties of Acyl Glycine Surfactants Derived from Vegetable Oils, Tenside Surfactants Detergents, (53) (2016) (284290). 10.3139/113.110435Suche in Google Scholar

28. Ananthapadmanabhan, K. P., Cece, A., Vincent, C. and Yang, L.: Relative roles of surfactant interactions with proteins and lipids in cleanser-induced skin dryness, Journal of the American Academy of Dermatology, (68) (2013) (AB78). 10.1016/j.jaad.2012.12.323Suche in Google Scholar

29. Savić, S., Weber, C., Savić, M. M. and Müller-Goymann, C.: Natural surfactant-based topical vehicles for two model drugs: Influence of different lipophilic excipients on in vitro/in vivo skin performance, International, Internationalnternational Journal of Pharmaceutics, (381) (2009) (220230). PMid:19616085; 10.1016/j.ijpharm.2009.07.007Suche in Google Scholar PubMed

30. Polefka, T. G. in Handbook of Detergents, Part A Properties (ed GuyBroze) Ch. 11, 433468 (CRC Press, 1999). 10.1201/b10985-12Suche in Google Scholar

31. Sjogren, H., Ericsson, C. A., Evenas, J. and Ulvenlund, S.: Interactions between charged polypeptides and nonionic surfactants, Biophysical Journal, (89) (2005) (4219–4233). PMid:16199501; 10.1529/biophysj.105.065342Suche in Google Scholar PubMed PubMed Central

32. Mehan, S., Aswal, V. K. and Kohlbrecher, J.: Tuning of protein-surfactant interaction to modify the resultant structure, Physical Review E, (92) (2015) (032713). PMid:26465504; 10.1103/PhysRevE.92.032713Suche in Google Scholar PubMed

33. Ananthapadmanabhan, K., Yang, L., Vincent, C., Tsaur, L., Vetro, K., Foy, V., Zhang, S., Ashkenazi, A., Pashkovski, E. and Subramanian, V.: A Novel Technology in Mild and Moisturizing Cleansing Liquids Cosmetic Dermatology, (22) (2009) (307316).Suche in Google Scholar

34. Rosen, M. J.: Surfactants and interfacial phenomena. 4th edn, 600 pp (Wiley, 2012). 10.1002/9781118228920Suche in Google Scholar

35. Zhang, G., Xu, B., Han, F., Zhou, Y., Liu, H., Li, Y., Cui, L., Tan, T. and Wang, N.: Green Synthesis, Composition Analysis and Surface Active Properties of Sodium Cocoyl Glycinate, American Journal of Analytical Chemistry, (Vol. 04 No. 09) (2013) (6). 10.4236/ajac.2013.49056Suche in Google Scholar

36. https://www.sigmaaldrich.com/catalog/product/sigma/d8035?lang=en&region=US.Suche in Google Scholar

Received: 2019-06-14
Accepted: 2019-07-13
Published Online: 2019-10-01
Published in Print: 2019-09-16

© 2019, Carl Hanser Publisher, Munich

Heruntergeladen am 9.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/113.110637/html
Button zum nach oben scrollen