Home Physical Sciences Surface and Interfacial Properties of Mono and Didodecyl Diphenyl Ether Disulfonates
Article
Licensed
Unlicensed Requires Authentication

Surface and Interfacial Properties of Mono and Didodecyl Diphenyl Ether Disulfonates

  • Long Bai , Xiaochen Liu , Tiliu Jiao , Yong Wang , Yueqing Huo and Jinping Niu
Published/Copyright: July 11, 2018
Become an author with De Gruyter Brill

Abstract

In this paper, monododecyl diphenyl ether disulfonate (C12-MADS) and didodecyl diphenyl ether disulfonate (C12-DADS) are Friedel-Craft reaction product of 1-dodecene and diphenyl oxide using sulfated zirconium as a catalyst, followed by sulfonation with fuming sulfuric acid in 1,2-dichloroethane and neutralization with aqueous sodium hydroxide solution. The relationship between the structures of the surfactants C12-DADS, C12-MADS and linear alkylbenzene sulfonate (C12-LAS) and their surface and interfacial properties was studied by measuring equilibrium surface tensions, dynamic surface tensions and dynamic interfacial tensions (IFT). The results show that the surface and interfacial activity of C12-MADS is better than that of C12-DADS and C12-LAS. The gemini surfactant C12-DADS shows most unfavorable surface and interfacial activity due to the fact that the cross-linked hydrophobic carbon chains decreases the number of exposed methyl in molecule. The dynamic surface tensions results show that the diffusion coefficients values of C12-MADS and C12-DADS are lower than that of C12-LAS, and the adsorption process of surfactants at air/water interface is a mixed diffusion-kinetic adsorption mechanism. The data of dynamic ITF between aqueous surfactants solutions and dodecane indicate that the NaCl and CaCl2 concentration has a weak effect on the stable value of dynamic IFT for C12-DADS. With increasing the NaCl and CaCl2 concentration, the stable values of dynamic ITF for the three surfactants mostly passes through a minimum at an optimum concentration, and the C12-MADS and C12-LAS can reduce the IFT to the 10−2 mN/m order of magnitude.

Kurzfassung

In dieser Veröffentlichung werden Monododecyldiphenyletherdisulfonat (C12-MADS) und Didodecyldiphenyletherdisulfonat (C12-DADS) als Friedel-Craft-Reaktionsprodukt aus 1-Dodecen und Diphenyloxid durch Sulfonierung mit rauchender Schwefelsäure in 1,2-Dichlorethan und Neutralisation mit wässriger Natriumhydroxidlösung unter Verwendung von sulfatiertem Zirkonium als Katalysator synthetisiert. Die Beziehung zwischen den Strukturen der Tenside C12-DADS, C12-MADS und des linearen Alkylbenzensulfonat C12-LAS und ihren Oberflächen- und Grenzflächeneigenschaften wurde durch Messung von Gleichgewichtsoberflächenspannungen, dynamischen Oberflächen- und dynamischen Grenzflächenspannungen (IFT) untersucht. Die Ergebnisse zeigen, dass die Oberflächen- und Grenzflächenaktivität von C12-MADS besser ist als von C12-DADS und C12-LAS. Das Gemini-Tensid C12-DADS zeigt die ungünstigste Oberflächen- und Grenzflächenaktivität aufgrund der Tatsache, dass die vernetzten hydrophoben Kohlenstoffketten die Anzahl der exponierten Methylgruppen im Molekül verringern. Die Ergebnisse der dynamischen Oberflächenspannungen zeigen, dass die Diffusionskoeffizienten von C12-MADS und C12-DADS niedriger sind als die von C12-LAS und dass der Adsorptionsprozess von Tensiden an der Luft/Wasser-Grenzfläche ein gemischter diffusionskinetischer Adsorptionsmechanismus ist. Die Daten der dynamischen ITF zwischen der wässrigen Tensidlösung und Dodecan zeigen, dass die NaCl- und CaCl2-Konzentration den stabilen Wert der dynamischen IFT von C12-DADS nur schwach beeinflussen. Mit ansteigender NaCl- und CaCl2-Konzentration durchlaufen die stabilen Werte der dynamischen ITF für die drei Tenside meistens ein Minimum bei einer optimalen Konzentration und C12-MADS und C12-LAS können die IFT auf die Größenordnung von 10−2 mN m−1 reduzieren.


*Correspondence address, Dr. Jinping Niu, China Research Institute of Daily Chemical Industry, No. 34 Wenyuan Road, Taiyuan 030001, Shanxi, People's Republic of China, E-Mail:

Long Bai is a postgraduate student at the China Research Institute of the Daily Chemical Industry. His main research field is the synthesis and application of gemini surfactants. Address: China Research Institute of Daily Chemical Industry, 34 Wenyuan Street, Taiyuan, Shanxi Province, 030001 P.R. China. E-Mail:

Xiaochen Liu is an engineer at the China Research Institute of the Daily Chemical Industry. His research interests in the synthesis and application of novel sulfonate surfactants for EOR. China Research Institute of Daily Chemical Industry, 34 Wenyuan Street, Taiyuan, Shanxi Province, 030001 P.R. China. E-Mail: .

Tiliu Jiao is an engineer at the China Research Institute of the Daily Chemical Industry. His research interests in the synthesis and application of gemini surfactants. China Research Institute of Daily Chemical Industry, 34 Wenyuan Street, Taiyuan, Shanxi Province, 030001 P.R. China. E-Mail: .

Yong Wang is a master at the China Research Institute of the Daily Chemical Industry, Taiyuan, Shanxi Province, P.R. China. His main research field is the properties and applications of olefin sulfonates. Address: China Research Institute of Daily Chemical Industry, 34 Wenyuan Street, Taiyuan, Shanxi Province, 030001 P.R. China. E-Mail: .

Yueqing Huo is an engineer at the China Research Institute of the Daily Chemical Industry. His research interests in the synthesis and application of novel sulfonate surfactants for EOR. China Research Institute of Daily Chemical Industry, 34 Wenyuan Street, Taiyuan, Shanxi Province, 030001 P.R. China. E-Mail: .

Jinping Niu is professor. Her research interests are the sulfonation/sulfation of organic materials and application of surfactants for EOR. Address: China Research Institute of Daily Chemical Industry, 34 Wenyuan Street, Taiyuan, Shanxi Province, 030001 P.R. China. Tel.: 0086-351-4192878.E-Mail:


References

1. Bunton, C. A., Robinson, L. B., Schaak, J. and Stam, M. F.: Catalysis of nucleophilic substitutions by micelles of dicationic detergents, J. Org. Chem.36 (1971) 2346. 10.1021/jo00815a033Search in Google Scholar

2. Menger, F. M. and Keiper, J. S.: Gemini surfactants, Angew. Chem., Int. Ed.39 (2000) 1906. 10.1002/1521-3773(20000602)39:11%3C1906::AID-ANIE1906%3E3.0.CO;2-QSearch in Google Scholar

3. Yang, J., Xie, J., Chen, G. and Chen, X. C.: Surface, interfacial and aggregation properties of sulfonic acid-containing gemini surfactants with different spacer lengths, Langmuir.25 (2009) 6100. 19466774 10.1021/la9000889Search in Google Scholar

4. Luo, Z., Gao, M., Ye, Y. and Yang, S. F.: Modification of reduced-charge montmorillonites by a series of Gemini surfactants: Characterization and application in methyl orange removal, Appl. Surf. Sci.324 (2015) 807. 10.1016/j.apsusc.2014.11.043Search in Google Scholar

5. Geng, X.F., Hu, X.Q., Xia, J.J. and Jia, X.C.: Synthesis and surface activities of a novel di-hydroxyl-sulfate-betaine-type zwitterionic gemini surfactants, Appl. Surf. Sci.271 (2013) 284. 10.1016/j.apsusc.2013.01.185Search in Google Scholar

6. ZhaoJ and ZouW.: Foams stabilized by mixed cationic gemini/anionic conventional surfactants, Colloid Polym. Sci.291 (2013) 1471. 10.1007/s00396-012-2883-8Search in Google Scholar

7. Ge, Y. S., Tai, S. X., Xu, Z.Q., Lai, L., Tian, F. F., Li, D. W., Jiang, F. L., Liu, Y. and Gao, Z. N.: Synthesis of three novel anionic gemini surfactants and comparative studies of their assemble behavior in the presence of bovine serum albumin, Langmuir.28 (2012) 5913. 22424242 10.1021/la204212sSearch in Google Scholar

8. Li, X., Hu, Z., Zhu, H., Zhao, S. F. and Cao, D. L.: Synthesis and properties of novel alkyl sulfonate gemini surfactants, J. Surfactants Deterg.13 (2010) 353. 10.1007/s11743-010-1188-5Search in Google Scholar

9. Zana, R.: Alkanediyl-α,ω-bis(dimethylalkylammonium bromide) surfactants: II. Krafft temperature and melting temperature, J. Colloid Interface Sci.252 (2002) 259. 16290787 10.1006/jcis.2002.8457Search in Google Scholar

10. Vanderhoff, J. W., Dimonie, V. L., El-Aasser, M. S. and Settlemeyer, L. A.: Evaluation of alkylated diphenyl ether disulfonate surfactants in 60:40 styrene–butadiene emulsion copolymerization, J. Appl. Polym. Sci.41 (1990) 1549. 10.1002/app.1990.070410716Search in Google Scholar

11. Huo, J., Liu, X. C. and Niu, J. P.: Synthesis and surface properties of disodium monoalkyl diphenyl oxide disulfonate, J. Surfactants Deterg.18 (2015) 523. 10.1007/s11743-015-1681-ySearch in Google Scholar

12. Rosen, M. J., Zhu, Z. H. and Gao, T.: Synergism in binary mixture of surfactants: 11. mixtures containing mono- and disulfonated alkyl- and dialkyldiphenylethers, J. Colloid Interface Sci.157 (1993) 254. 10.1006/jcis.1993.1183Search in Google Scholar

13. Ben-Moshe, M. and Magdassi, S.: Surface activity and micellar properties of anionic gemini surfactants and their analogues, Colloids Surf., A.250 (2004) 403. 10.1016/j.colsurfa.2004.01.044Search in Google Scholar

14. Zhang, Q., Tian, M. Z., Han, X. Y., Wu, C. X., Li, Z. B. and Wang, Y. L.: Synthesis, aggregation behavior and interfacial activity of branched alkylbenzenesulfonate gemini surfactants, J. Colloid Interface Sci.362 (2011) 406. 21764066 10.1016/j.jcis.2011.05.087Search in Google Scholar PubMed

15. Jiao, T. L., Liu, X. C., Wang, X. Y. and Niu, J. P.: Synthesis and properties of dioctyl diphenyl ether disulfonate gemini surfactant, Tenside Surfactants Deterg.53 (2016) 313. 10.3139/113.110443Search in Google Scholar

16. Jiao, T. L., Liu, X. C., Wang, X. Y., Wang, Y. and Niu, J. P.: Synthesis and aggregation behaviors of disulfonate gemini surfactant with double hexadecyl tails, Colloids Surf., A.498 (2016) 30. 10.1016/j.colsurfa.2016.03.042Search in Google Scholar

17. Jiao, T. L., Liu, X. C. and Niu, J. P.: Effects of sodium chloride on adsorption at different interfaces and aggregation behaviors of disulfonate gemini surfactants, RSC Adv.6 (2016) 13881. 10.1039/C5RA25727ASearch in Google Scholar

18. Jiao, T. L., Liu, X. C., Wang, X. Y., Wang, Y. and Niu, J. P.: Sulfated zirconium catalyst for synthesis of dialkylated diphenylether disulfonate gemini surfactants, J. Surfactants Deterg.18 (2015) 1067. 10.1007/s11743-015-1728-0Search in Google Scholar

19. Bai, L., Liu, X. C., Jiao, T. L., Wang, Y., Huo, Y. and Niu, J. P.: Surface properties and thermodynamic properties of micellization of mono- and di-tetrapropylene diphenyl ether disulfonates, J. Mol. Liq.244 (2017) 433. 10.1016/j.molliq.2017.09.033Search in Google Scholar

20. Wang, Y., Liu, X., Jiao, T. and Niu, J. P.: Performance comparison between internal olefin sulfonates and alpha olefin sulfonates, J. Surfactants Deterg.20 (2017) 183. 10.1007/s11743-016-1890-zSearch in Google Scholar

21. Liu, X. C., Zhao, Y. X., Li, Q. X. and Niu, J. P.: Adsorption behavior, spreading and thermal stability of anionic-nonionic surfactants with different ionic headgroup, J. Mol. Liq.219 (2016) 1100. 10.1016/j.molliq.2016.04.030Search in Google Scholar

22. Rosen, M. J. and Kunjappu, J. T.: Surfactants and Interfacial Phenomena, fourth ed.John Wiley & Son, New York (2012). 10.1002/9781118228920Search in Google Scholar

23. Zana, R. and Xia, J. D.: Gemini Surfactants, Marcel Dekker Inc., New York, pp. (2003) 185. 10.1201/9780203913093Search in Google Scholar

24. Liu, X. C., Zhao, Y. X., Li, Q. X., Jiao, T. L. and Niu, J. P.: Surface and interfacial tension of nonylphenol polyethylene oxides sulfonate, J. Mol. Liq.216 (2016) 185. 10.1016/j.molliq.2016.01.009Search in Google Scholar

25. Ward, A. and Tordai, L.: Time-dependence of boundary tensions of solutions I. the role of diffusion in time-effects, J. Chem. Phys.14 (1946) 453. 10.1063/1.1724167Search in Google Scholar

26. Eastoe, J. and Dalton, J. S.: Dynamic surface tension and adsorption mechanisms of surfactants at the air-water interface, Adv. Colloid Interface Sci.85 (2000) 103. 10.1016/S0001-8686(99)00017-2Search in Google Scholar PubMed

27. Fainerman, V. B., Makievski, A. V. and Miller, R.: The analysis of dynamic surface tension of sodium alkyl sulphate solutions, based on asymptotic equations of adsorption kinetic theory, Colloids Surf., A.87 (1994) 61. 10.1016/0927-7757(94)02747-1Search in Google Scholar

28. Zhao, R. H., Zhang, L., Zhang, L., Zhao, S. and Yu, J. Y.: Effect of the hydrophilic–lipophilic ability on dynamic interfacial tensions of alkylbenzene sulfonates, Energy Fuels24 (2010) 5048. 10.1021/ef1006929Search in Google Scholar

29. Cao, Y., Zhao, R. H., Zhang, L., Xu, Z. C., Jin, Z.Q., Luo, L. and Zhao, S.: Effect of electrolyte and temperature on interfacial tensions of alkylbenzene sulfonate solutions, Energy Fuels26 (2012) 2175. 10.1021/ef201982sSearch in Google Scholar

30. Liu, Z. Y., Zhang, L., Cao, X. L., Song, X. W., Jin, Z. Q., Zhang, L. and Zhao, S.: Effect of electrolytes on interfacial tensions of alkyl ether carboxylate solutions, Energy Fuels27 (2013) 3122. 10.1021/ef400458qSearch in Google Scholar

Received: 2018-02-26
Accepted: 2018-04-12
Published Online: 2018-07-11
Published in Print: 2018-07-16

© 2018, Carl Hanser Publisher, Munich

Downloaded on 6.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/113.110573/html
Scroll to top button