Home Physical Sciences Synthesis and Interfacial Tensions of Sodium p-Dimethyl Dodecylbenzene Sulfonates
Article
Licensed
Unlicensed Requires Authentication

Synthesis and Interfacial Tensions of Sodium p-Dimethyl Dodecylbenzene Sulfonates

  • Changming Zhao , Ling Zhang , Yue Wang , Tiexin Cheng , Wensheng Yang and Guangdong Zhou
Published/Copyright: July 11, 2018
Become an author with De Gruyter Brill

Abstract

Six isomers of sodium para-dimethyl dodecylbenzene sulfonates (p-S12) were synthesized by a series of reactions. The surface tension of the isomers p-S12 in an aqueous NaCl solution (4000 mg/L) was measured. From the data the following parameters were calculated: critical micelle concentration (CMC), the surface tension at the CMC (γCMC), the surface excess concentration at surface saturation (Γmax) and the area per molecule at surface saturation (Asmin). The Asmin increased and the Γmax decreased when the aromatic nucleus moves to the center of long-chain alkyl group. The dynamic interfacial tensions (DIFT) between p-S12 in 4000 mg/L NaCl aqueous solution and five n-paraffins were measured by using a spinning drop technique. The DIFT of the p-S12 showed the characteristic that the interfacial tension (IFT) is low at the beginning, then increases, reaches a maximum value, and finally continues to decrease until it reaches a stable value. By the measurement of alkane carbon number for the minimum IFT, nmin, of the six isomers solutions, we found that the nmin firstly decreases and then increases when the aromatic nucleus moves to the long-chain alkyl group. This phenomenon is due to the differences of hydrophilic-lipophilic properties and the structure of the p-S12 isomers.

Kurzfassung

Sechs Isomere des Natrium-p-dimethyldodecylbenzenlsulfonats (p-S12) wurden in einer Reihe von Reaktionen synthetisiert. Die Oberflächenspannung von p-S12 in wässriger NaCl-Lösung (4000 mg/L) wurde gemessen. Aus den Messdaten wurden die folgenden Parameter berechnet: die kritische Mizellenbildungskonzentration (CMC), die Oberflächenspannung an der CMC (γCMC), die Oberflächenüberschußkonzentration bei Oberflächensättigung (Γmax) und die Fläche pro Molekül bei Oberflächensättigung (Asmin). Asmin stieg an und Γmax nahm ab, wenn sich der aromatische Kern zum Zentrum der langkettigen Alkylgruppe bewegte. Die dynamische Grenzflächenspannung (DIFT) zwischen p-S12 in wässriger NaCl-Lösung (4000 mg/l) und fünf n-Paraffinen wurde unter Verwendung der Spinning-Drop-Technik gemessen. Die Messungen der dynamische Grenzflächenspannung der p-S12-Isomere zeigte, dass die Grenzflächenspannung (ITF) zu Beginn niedrig ist, dann ansteigt, einen maximalen Wert erreicht und schließlich auf einen stabilen Wert abfällt. Durch die Messung der Alkan-Kohlenstoffzahl der sechs Isomerlösungen bei der Minimum-IFT, nmin, fanden wir, dass nmin zunächst abnimmt und dann ansteigt, wenn sich der aromatische Kern zu der langkettigen Alkylgruppe bewegt. Dieses Phänomen beruht auf den Unterschieden der hydrophil-lipophilen Eigenschaften und der Struktur der p-S12-Isomere.


*Correspondence address, Dr. Guangdong Zhou, College of chemistry, Jilin University, Changchun, 130061, P.R. China, Tel.: +86-18644987744, E-Mail:

Dr. Zhao is currently studying at Jilin University, engaged in physical and surface chemistry. The main research is the synthesis and interfacial tensions of sodium alkylbenzene sulfonate.

Ling Zhang and Yue Wang are masters, studying in Jilin University.

Guangdong Zhou and Tiexin Cheng are professors who teach in Jilin University, engaged in surface and catalytic chemistry and achieved some results.


References

1. Cao, Y., Zhao, R. H., Zhang, L., Xu, Z. C., Jin, Z. Q., Luo, L., Zhang, L. and Zhao, S.: Effect of electrolyte and temperature on IFTs of alkylbenzene sulfonate solutions, Energy Fuel.26 (2012) 21752181. 10.1021/ef201982sSearch in Google Scholar

2. Zhang, Y. M., Niu, J. P. and Li, Q. X.: Synthesis and Properties Evaluation of Sodium Fatty Alcohol Polyoxyethylene Ether Sulfonate, Tenside Surfactants Detergents47 (2010) 3439. 10.3139/113.110051Search in Google Scholar

3. Cui, Z., Wu, L., Sun, M., Jiang, J. and WangF.: Synthesis of Dodecyl Lauroyl Benzene Sulfonate and its Application in Enhanced Oil Recovery. Tenside Surfact. Det.48 (2011) 408414. 10.3139/113.110147Search in Google Scholar

4. Tang, L., Liu, X. C., Niu, J. P. and Wang, X. Y.: Interfacial Properties of Alkylbenzene Sulfonates Ternary Mixtures. Tenside Surfactants Detergents52 (2015) 252255. 10.3139/113.110373Search in Google Scholar

5. Mao, J. M., Xu, H. J., Li, F. F. and Liu, B. N.: Research of Binary Surfactant Mixtures Based on α-Sulphonated Fatty Acid Methyl Ester. Tenside Surfactants Detergents52 (2015) 113119. 10.3139/113.110355Search in Google Scholar

6. Zhao, Y., Xu, Z. G., Li, Z. S., Qiao, W. H. and Cheng, L. B.: Synthesis and interfacial tension behavior of heavy alkyl benzene sulfonates, Petrol. Sci. Technol.24 (2006) 821827. 10.1081/LFT-200041180Search in Google Scholar

7. Zhang, Y., Zhang, G. Y., Wang, P. W., Niu, J. P., Guan, J. C. and Gu, H. X.: The interface behavior and enhanced oil recovery mechanism of heavy alkylbenzene sulfonates, Acta Phys.-chim. Sinica21 (2005) 161165.10.3866/PKU.WHXB20050210Search in Google Scholar

8. Zhao, Y., Dong, Y. H., Bi, C. F. and Fan, Y. H.: Study on dynamic interfacial tension of a series of alkylbenzene sulfonates with alkane, Acta Chim Sinica.66 (2008) 799802.Search in Google Scholar

9. Wang, Y. X., Zhao, Y., Hou, Q., Qi, J. and Li, Z. S.: Synthesis and Interfacial Properties of Dialkylbenzenesulfonates for Producting Low Interfacial Tensions; Tenside Surfact. Det.45 (2008) 2529. 10.3139/113.100360Search in Google Scholar

10. Doe, P. H., El-Emary, M. and Wade, W. H.: Surfactants for producing low interfacial tensions I: Linear alkyl benzene sulfonates, J. Am. Oil Chem. Soc.54 (1977) 570577. 10.1007/BF03027638Search in Google Scholar

11. Doe, P. H., El-Emary, M. and Wade, W. H.: Surfactants for producing low interfacial tensions: II. Linear alkylbenzenesulfonates with additional alkyl substituents, J. Am. Oil Chem. Soc.55 (1978) 505512. 10.1007/BF02668495Search in Google Scholar

12. Doe, P. H., El-Emary, M. and Wade, W. H.: Surfactants for producing low interfacial tensions: III. Di and tri n-alkylbenzenesulfonates, J. Am. Oil Chem. Soc.55 (1978) 513520. 10.1007/BF02668496Search in Google Scholar

13. Yuan, F. Q., Cheng, Y. Q., Wang, H. Y., Xu, Z. C., Zhang, L., Zhang, L. and Zhao, S.: Effect of organic alkali on interfacial tensions of surfactant solutions against crude oils, Colloid Surf. A-Physico. chem. Eng. Asp.470 (2015) 171178. 10.1016/j.colsurfa.2015.01.059Search in Google Scholar

14. Li, H. R., Li, Z. Q., Song, X. W., Li, C. B., Guo, L. L., Zhang, L., Zhang, L. and Zhao, S.: Effect of Organic Alkalis on Interfacial Tensions of Surfactant/Polymer Solutions against Hydrocarbons, Energy Fuel.29 (2015) 459466. 10.1021/ef5019862Search in Google Scholar

15. Zhu, Y. W., Zhao, R. H., Jin, Z. Q., Zhang, L., Zhang, L., Luo, L. and Zhao, S.: Influence of Crude Oil Fractions on Interfacial Tension of Alkylbenzene Sulfonate Solutions Energy Fuel.27 (2013) 46484653.Search in Google Scholar

16. Zhang, L., Luo, L., Zhao, S., Xu, Z. C., An, J. Y. and Yu, J. Y.: Effect of different acidic fractions in crude oil on dynamic interfacial tensions in surfactant/alkali/model oil systems, J. Pet. Sci. Eng.41 (2004) 189198. 10.1016/S0920-4105(03)00153-0Search in Google Scholar

17. Zhao, R. H., Zhang, L., Zhang, L., Zhao, S., Yu, J. Y.: Effect of the Hydrophilic-Lipophilic Ability on Dynamic Interfacial Tensions of Alkylbenzene Sulfonates, Energy Fuel.24 (2010) 50485052. 10.1021/ef1006929Search in Google Scholar

18. Zhao, R. H., Huang, H. Y., Wang, H. Y., Zhang, J. C., Zhang, L., Zhang, L. and Zhao, S.: Effect of Organic Additives and Crude Oil Fractions on Interfacial Tensions of Alkylbenzene Sulfonates, J. Dispersion Sci. Technol.34 (2013) 623631. 10.1080/01932691.2012.685844Search in Google Scholar

19. CayiasJ. L., Schechter, R. S. and Wade, W. H.: Modeling Crude Oils for Low Interfacial Tension, J. Soc. Petrol. Eng.16 (1976) 351357. 10.2118/5813-PASearch in Google Scholar

20. Zu, Z. G., Zhao, Y., Yuan, B., Qiao, W. H., Li, Z. S. and Cheng, L. B.: Synthesis of Novel Arylalkyl Sulfonate Surfactants; Tenside Surfactants Detergents41 (2004) 3133. 10.3139/113.100206Search in Google Scholar

21. Bakshi, M. S.: Micelle Formation by Sodium Dodecyl Sulfate in Water-Additive Systems, Bull. Chem. Soc. Jpn.69 (1996) 27232729. 10.1246/bcsj.69.2723Search in Google Scholar

22. VonnegutB.: Rotating Bubble Method for the Determination of Surface and Interfacial Tensions, Rev. Sci. Instrum.13 (1942) 69. 10.1063/1.1769937Search in Google Scholar

23. Rosenthan, D. K.: The shape and stability of a bubble at the axis of a rotating liquid, J. Fluid Mech.12 (1962) 358366. 10.1017/S0022112062000269Search in Google Scholar

24. Torza, S.: The rotating-bubble apparatus, Rev. Sci. Instrum.46 (1975) 778783. 10.1063/1.1134309Search in Google Scholar

Received: 2017-11-20
Accepted: 2018-01-17
Published Online: 2018-07-11
Published in Print: 2018-07-16

© 2018, Carl Hanser Publisher, Munich

Downloaded on 6.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/113.110569/html
Scroll to top button