Foam and Rheological Properties of a Kind of Extended Surfactants
-
Yawen Zhou
, Mengdie Lv , Changyao Liu and Baocai Xu
Abstract
The foam and rheological properties of four extended surfactants C12–14PmE2S (m = 0, 3, 5, and 8) of four different concentrations were investigated in this paper. The foam properties, including, foamability, foam stability, liquid carrying ability, foam drainage and foam morphology were characterized. The rheological measurements were carried out through frequency sweep in the oscillation mode. The foamability and foam stability decreased with increasing numbers of PO groups embedded in those surfactants. At the same concentration, the longer the PO chain of the surfactant molecule, the larger the liquid carrying capacity of the foam. The foaming number decreases as the time increases, and longer PO chains were associated with faster foam number decline. The rheological measurements show that those surfactant solutions are “liquid-like”. With increasing surfactant concentration, the viscous modulus of C12–14P8E2S increases gradually, whereas that of C12–14E2S decreases.
Kurzfassung
In dieser Arbeit wurden die Schaum- und rheologischen Eigenschaften der vier erweiterten Tensiden C12–14PmE2S (m = 0, 3, 5 und 8) bei jeweils vier verschiedenen Konzentrationen untersucht. Die Schaumeigenschaften einschließlich Schäumbarkeit, Schaumstabilität, Flüssigkeitstransportvermögen, Schaumdrainage und Schaummorphologie wurden charakterisiert. Die rheologischen Messungen wurden bei Frequenzdurchlauf im Oszillationsmodus durchgeführt. Die Schäumbarkeit und die Schaumstabilität nahmen mit zunehmender Anzahl von PO-Gruppen, die in den Molekülen dieser Tenside integriert waren, ab. Bei der gleichen Tensidkonzentration gilt, je länger die PO-Kette des Tensidmoleküls ist, desto größer ist die Flüssigkeitstransportkapazität des Schaums. Die Schaumzahl nimmt mit zunehmender Zeit ab, und mit länger werdenden PO-Ketten nahm die Schaumzahl schneller ab. Die rheologischen Messungen zeigen, dass diese Tensidlösungen „flüssigkeitsähnlich“ sind. Mit steigender Tensidkonzentration nimmt der Viskositätsmodul von C12–14P8E2S graduell zu, während der von C12–14E2S abnimmt.
References
1. Gale, W. W., Puerto, M. C., Ashcraft, T. L., Saunders, R. K. and Reed, R. L.: Propoxylated ethoxylated surfactants and method of recovering oil therewith. US (1981) US 4293428A.Search in Google Scholar
2. Phan, T. T., Attaphong, C. and Sabatini, D. A.: Effect of extended surfactant structure on interfacial tension and microemulsion formation with triglycerides, Journal of the American Oil Chemists Society88 (2011) 1223–1228. 10.1007/s11746-011-1784-1Search in Google Scholar
3. Klaus, A., TiddyG.J., TouraudD., Schramm, A., Stühler, G. and Kunz, W.: Phase behavior of an extended surfactant in water and a detailed characterization of the dilute and semidilute phases. Langmuir26. 8 (2010) 5435–5443. 20000427 10.1021/la903899wSearch in Google Scholar
4. Miñana-Perez, M., Graciaa, A., Lachaise, J. and Salager, J. L.: Solubilization of polar oils with extended surfactants, Colloids Surfaces A: Physicochem. Eng. Aspects100 (1995) 217–224. 10.1016/0927-7757(95)03186-HSearch in Google Scholar
5. Liu, X., Zhaoa, Y., Li, Q. and Niu, J.: Surface tension, interfacial tension and emulsification of sodium dodecyl sulfate extended surfactant, Colloids and Surfaces A: Physicochem. Eng. Aspects494 (2016) 201–208. 10.1016/j.colsurfa.2016.01.037Search in Google Scholar
6. Salager, J. L., Antón, R. E., Sabatini, D. A., Harwell, J. H., Acosta, E. J. and Tolosa, L. I.: Enhancing solubilization in microemulsions-State of the art and current trends, J Surfact Deterg.8 (2005) 3–21. 10.1007/s11743-005-0328-4Search in Google Scholar
7. Attaphong, C., Do, L. and Sabatini, D. A.: Vegetable oil-based microemulsions using carboxylate-based extended surfactants and their potential as an alternative renewable biofuel, Fuel94 (2012) 606–613. 10.1016/j.fuel.2011.10.048Search in Google Scholar
8. Klaus, A., Tiddy, G. J., Rachel, R., Trinh, A. P., Maurer, E., Touraud, D. and Kunz, W.: Hydrotrope-induced inversion of salt effects on the cloud point of an extended surfactant, Langmuir27 (2011) 4403–4411. 21443178 10.1021/la104744eSearch in Google Scholar PubMed
9. Forgiarini, A. M., Scorzza, C., Velásquez, J., Vejar, F., Zambrano, E. and Salager, J. L.: Influence of the mixed propoxy/ethoxy spacer arrangement order and of the ionic head group nature on the adsorption and aggregation of extended surfactants, J Surfact Deterg13 (2010) 451–458. 10.1007/s11743-010-1216-5Search in Google Scholar
10. Klaus, A., Tiddy, G. J. T., Solans, C., Harrar, A., Touraud, D. and Kunz, W.: Effect of salts on the phase behavior and the stability of nano- emulsions with rapeseed oil and an extended surfactant, Langmuir28 (2012) 8318–8328. 22537241 10.1021/la300435tSearch in Google Scholar PubMed
11. He, Z. Q., Zhang, M. J., Fang, Y., Jin, G. Y. and Chen, J.: Extended surfactants: a well-designed spacer to improve interfacial performance through a gradual polarity transition, Colloids and Surfaces A: Physicochem. Eng. Aspects450 (2014) 83–92. 10.1016/j.colsurfa.2014.03.012Search in Google Scholar
12. Witthayapanyanon, A., Acosta, E. J., Harwell, J. H. and Sabatini, D. A.: Formulation of ultralow interfacial tension systems using extended surfactants. J Surfact Deterg9 (2006) 331–339. 10.1007/s11743-006-5011-2Search in Google Scholar
13. Witthayapanyanon, A., Phan, T. T., Heitmann, T. C., Harwell, J. H. and Sabatini, D. A.: Interfacial properties of extended-surfactant-based microemulsions and related macroemulsions, J Surfact Deterg13 (2010) 127–134. 10.1007/s11743-009-1151-5Search in Google Scholar
14. Do, L. D., Attaphong, C., Scamehorn, J. F. and Sabatini, D. A.: Detergency of vegetable oils and semi-solid fats using microemulsion mixtures of anionic extended surfactants: the HLD concept and cold water applications, J Surfact Deterg18 (2015) 373–382. 10.1007/s11743-014-1659-1Search in Google Scholar
15. Rosen, M. J., Wang, H., Shen, P. and Zhu, Y.: Ultralow interfacial tension for enhanced oil recovery at very low surfactant concentrations, Langmuir21 (2005) 3749–3756. 15835933 10.1021/la0400959Search in Google Scholar
16. Puerto, M., Hirasaki, G. J., Miller, C. A. and Barnes, J. R.: Surfactant systems for EOR in high-temperature, high-salinity environments, SPE Journal17 (2010) 11–19. 10.2118/129675-PASearch in Google Scholar
17. Wang, Y., Liu, X., Zhou, Y. and Niu, J.: Influence of hydrocarbon chain branching on foam properties of olefin sulfonate with FoamScan, J Surfact Deterg19 (2016) 1215–1221. 10.1007/s11743-016-1872-1Search in Google Scholar
18. Zhou, Y., Wang, S., Lv, M., Niu, J. and Xu, B.: Analysis of the effects of hydrocarbon chain on foam properties of alkyl polyglycosides, J Surfact Deterg20 (2017) 623–630. 10.1007/s11743-017-1955-7Search in Google Scholar
19. Xu, L., Xu, G., Yu, L., Gong, H., Dong, M. and Li, Y.: The displacement efficiency and rheology of welan gum for enhanced heavy oil recovery, Polym. Adv. Technol25 (2015) 1122–1129. 10.1002/pat.3364Search in Google Scholar
20. Pugh, R. J.: Foaming, foam films, antifoaming and defoaming, Adv Colloid Interface Sci.64 (1996) 67–142. 10.1016/0001-8686(95)00280-4Search in Google Scholar
21. Charoensaeng, A., Sabatini, D. A. and Khaodhiar, S.: Solubilization and adsolubilization of polar and nonpolar organic solutes by linker molecules and extended surfactants, J. Surfactants Deterg12 (2009) 209–217. 10.1007/s11743-009-113-ySearch in Google Scholar
22. Barik, T. K. and Roy, A.: Statistical distribution of bubble size in wet foam, Chem Eng Sci.64 (2009) 2039–2043. 10.1016/j.ces.2009.01.039Search in Google Scholar
23. Langevin, D.: Influence of interfacial rheology on foam and emulsion properties, Adv Colloid Interface Sci.88 (2000) 209–222. 10.1016/S0001-8686(00)00045-2Search in Google Scholar
24. Gong, H., Xu, G., Liu, T., Xu, L., Zhai, X., Zhang, J. and Lv, X.: Aggregation behaviors of PEO-PPO-ph-PPO-PEO and PPO-PEO-ph-PEO-PPO at an air/water interface: experimental study and molecular dynamics simulation, Langmuir28 (2012) 13590–13600. 22954368 10.1021/la303430cSearch in Google Scholar PubMed
25. Panteloglou, A. G., Bell, A. E. and Ma, F.: Effect of high-hydrostatic pressure and pH on the rheological properties of gum Arabic, Food Chemistry122 (2010) 972–979. 10.1016/j.foodchem.2010.02.037Search in Google Scholar
26. Sarmiento-Gomez, E., Lopez-Diaz, D. and Castillo, R.: Microrheology and characteristic lengths in wormlike micelles made of a zwitterionic surfactant and SDS in brine, J. Phys. Chem.B 114 (2010) 12193–12202. 10.1021/jp104996thSearch in Google Scholar
© 2018, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Review Article
- Synthesis, Properties and Applications of Anionic Phosphate Ester Surfactants: A Review
- Detergent Ingredients
- Biological Surfactants vs. Polysorbates: Comparison of Their Emulsifier and Surfactant Properties
- Environmental Chemistry
- Green and Efficient Reverse Micellar Extraction and Recovery of Mixed Ionic Dyes from Textile Effluent
- Physical Chemistry
- Thermodynamic and Interfacial Properties of Cationic Gemini Surfactant in the Presence of Alcohols
- Research of Binary Surfactant Mixtures Based on N-Lauroyl Sarcosinate
- Surface and Interfacial Properties of Mono and Didodecyl Diphenyl Ether Disulfonates
- Application
- Adsorption and Surface Properties of Mixtures of Fatty Acid Methyl Ester Ethoxylates and Sodium Dodecylbenzene Sulfonate
- Synthesis
- Synthesis and Interfacial Tensions of Sodium p-Dimethyl Dodecylbenzene Sulfonates
- Synthesis of 4-Hydroxy-4-(4-nitrophenyl)butan-2-one using p-Nitro Benzaldehyde and Acetone in Aqueous Micellar Media using L-Proline
- Novel Surfactants
- Foam and Rheological Properties of a Kind of Extended Surfactants
- Formation of Mixed Micelles of the Environmentally Acceptable Oxy-Diester-Linked Gemini Surfactants with Brij 58
Articles in the same Issue
- Contents/Inhalt
- Contents
- Review Article
- Synthesis, Properties and Applications of Anionic Phosphate Ester Surfactants: A Review
- Detergent Ingredients
- Biological Surfactants vs. Polysorbates: Comparison of Their Emulsifier and Surfactant Properties
- Environmental Chemistry
- Green and Efficient Reverse Micellar Extraction and Recovery of Mixed Ionic Dyes from Textile Effluent
- Physical Chemistry
- Thermodynamic and Interfacial Properties of Cationic Gemini Surfactant in the Presence of Alcohols
- Research of Binary Surfactant Mixtures Based on N-Lauroyl Sarcosinate
- Surface and Interfacial Properties of Mono and Didodecyl Diphenyl Ether Disulfonates
- Application
- Adsorption and Surface Properties of Mixtures of Fatty Acid Methyl Ester Ethoxylates and Sodium Dodecylbenzene Sulfonate
- Synthesis
- Synthesis and Interfacial Tensions of Sodium p-Dimethyl Dodecylbenzene Sulfonates
- Synthesis of 4-Hydroxy-4-(4-nitrophenyl)butan-2-one using p-Nitro Benzaldehyde and Acetone in Aqueous Micellar Media using L-Proline
- Novel Surfactants
- Foam and Rheological Properties of a Kind of Extended Surfactants
- Formation of Mixed Micelles of the Environmentally Acceptable Oxy-Diester-Linked Gemini Surfactants with Brij 58