Home Thermodynamics of Micellization, Interfacial Behavior and Wettability Alteration of Aqueous Solution of Nonionic Surfactants
Article
Licensed
Unlicensed Requires Authentication

Thermodynamics of Micellization, Interfacial Behavior and Wettability Alteration of Aqueous Solution of Nonionic Surfactants

  • Sunil Kumar and Ajay Mandal
Published/Copyright: September 6, 2017
Become an author with De Gruyter Brill

Abstract

The present work deals with the physiochemical properties of polyoxyethylene sorbitan fatty acid esters (polysorbates), which are commonly known under the trade name Tween. Thermodynamics of micellization and adsorption at air-water interface for these nonionic surfactants solutions have been studied over a broad range of temperature. As the temperature of the surfactant solutions increases, the surface tension decreases whereas the critical micelle concentration (CMC) of each surfactant solution initially decreases and then increases. The free Gibb free energies of the micelle formation ΔGmo, and the surfactant adsorptionΔGadso, are calculated for the CMC of each surfactant at different temperatures. The surface or expanding pressure (Πcmc), minimum area per molecule (Amin), maximum surface excess (Γmax) are also calculated. The interfacial tension (IFT) between the aqueous surfactant solutions and the crude oil are measured at different concentrations of the surfactants using a spinning drop tensiometer. The contact angles are determined on an oil wet quartz surface to investigate the wettability alteration in the presence of Tween surfactants with varying salinity. FTIR analysis of quartz at dry and oil wet state, crude oil and COBRS (crude oil-brine-rock-surfactant) combinations are performed to identify the associated functional groups and their mutual interactions.

Kurzfassung

Die vorliegende Arbeit beschäftigt sich mit den physiochemischen Eigenschaften von Polyoxyethylensorbitanfettsäureestern (Polysorbate), die unter dem Handelsnamen Tween bekannt sind. Die Thermodynamik der Mizellenbildung und der Adsorption an der Luft-Wasser-Grenzfläche für diese nichtionischen Tensidlösungen wurde über einen breiten Temperaturbereich untersucht. Wenn die Temperatur der Tensidlösungen zunimmt, nimmt die Oberflächenspannung ab, während die kritische Mizellenbildungskonzentration (CMC) jeder Tensidlösung anfänglich abnimmt und dann zunimmt. Die freie Gibb-Energie der Mizellenbildung ΔGmo und die der Tensidadsorption ΔGadso werden für jedes Tensid bei der CMC für verschiedene Temperaturen berechnet. Es werden auch der Oberflächen- oder Expansionsdruck (Πcmc), der minimale Platzbedarf pro Tensidmolekül (Amin) und der maximale Oberflächenüberschuss (Γmax) berechnet. Die Grenzflächenspannung (IFT) zwischen den wässrigen Tensidlösungen und dem Rohöl werden bei verschiedenen Tensidkonzentrationen mit einem Spinning-Drop-Tensiometer gemessen. Die Kontaktwinkel werden auf einer mit Öl benetzten Quarzoberfläche bestimmt, um die Änderung der Benetzung in Gegenwart von Tween-Tensiden mit unterschiedlichem Salzgehalt zu ermitteln. Die FT-IR-Analyse von Quarz im Trocken- und im mit Öl benetzten Zustand, des Rohöls und der COBRS-Kombinationen (Rohöl-Sole-Rock-Tensid) werden durchgeführt, um die zugehörigen funktionellen Gruppen und ihre gegenseitigen Wechselwirkungen zu identifizieren.


*Correspondence address, Dr. Ajay Mandal, Department of Petroleum Engineering, Indian Institute of Technology (ISM), Dhanbad 826004, India, E-Mail:

Dr. Ajay Mandal is presently working as Associate Professor in Department of Petroleum Engineering, Indian Institute of Technology (ISM), Dhanbad. His research area includes, synthesis and characterization of surfactants, enhanced oil recovery, gas hydrates and multi-phase flow system. He has published more than 100 research papers in reputed peer reviewed International and National Journals. He is a reviewer of many International Journals. Dr. Mandal has been awarded 2015 SPE South Asia Regional Distinguished Achievement Award for Petroleum Engineering Faculty. He is also a member in the editorial board of International Journal of Petroleum Engineering.

Mr. Sunil Kumar is doing his PhD in the field of surfactant induced enhanced oil recovery in Department of Petroleum Engineering, Indian Institute of Technology (ISM), Dhanbad. Earlier he did his Masters in Petroleum Engineering from the same Institute. He has published seven papers in reputed international Journals.


References

1. Zhou, X., Dong, M. and Maini, B.: The dominant mechanism of enhanced heavy oil recovery by chemical flooding in two dimensional physical model; Fuel108 (2013) 261268. 10.1016/j.fuel.2013.02.012Search in Google Scholar

2. Reed, R. L. and Healy, R. N: Some physicochemical aspects of microemulsion flooding: a review, in: Shah, D. O. and Schecheter, R. S. (Ed.), Improved Oil Recovery by Surfactant and Polymer Flooding, Academic Press (1977) 383. 10.1016/B978-0-12-641750-0.50017-7Search in Google Scholar

3. Chatzis, I. and Morrow, N. R.: Correlation of capillary number relationships for sandstone; SPE J.24 (1984) 555562. 10.2118/10114-PASearch in Google Scholar

4. Schramm, L. L.: Surfactant Induced Wettability Alteration in porous Media. In: Spinler, E. A., Baldwin, B. A., Toriumi, A. (Ed.), Surfactants Fundamentals and applications in the petroleum industry, Cambridge University Press (2000) 159189. 10.1017/CBO9780511524844Search in Google Scholar

5. Kumar, S. and Mandal, A.: Studies on interfacial behavior and wettability change phenomena by ionic and nonionic surfactants in presence of alkalis and salt for enhanced oil recovery; Journal of Applied Surface Science372 (2016) 4251. 10.1016/j.apsusc.2016.03.024Search in Google Scholar

6. Kumar, S., Panigrahi, P., Saw, R. K. and Mandal, A.: Interfacial interactions of cationic surfactants and its effect on wettability alteration of oil-wet carbonate rock; Energy Fuels30 (4) (2016) 28462857. 10.1021/acs.energyfuels.6b00152Search in Google Scholar

7. Austad, T. and Milter, J.: Spontaneous imbibition of water into low permeable chalk at different wettabilities using surfactants; SPE 37236 presented at the International Symposium on Oilfield Chemistry, Houston, TX (1997). 10.2118/37236-MSSearch in Google Scholar

8. Standnes, D. C. and Austad, T.: Wettability alteration in chalk. 2. Mechanism for wettability alteration from oil-wet to water-wet using surfactant; J. Pet. Sci. Eng.28 (2000) 123143. 10.1016/S0920-4105(00)00084-XSearch in Google Scholar

9. Spinler, E. A., Zornes, D. R., Tobola, D. P. and Moradi-Araghi, A.: Enhancement of oil recovery using a low concentration of surfactant to improve spontaneous and forced imbibition in chalk; SPE 59290 presented at the SPE/DOE Improved Oil Recovery Symposium, Tulsa, OK (2000). 10.2118/59290-MSSearch in Google Scholar

10. ShengJ. J.: Status of surfactant EOR technology, Petroleum1 (2) (2015) 97105. 10.1016/j.petlm.2015.07.003Search in Google Scholar

11. Howe, A. M., Clarke, A., Mitchell, J., Staniland, J., Hawkes, L. and Whalan, C.: Visualising surfactant enhanced oil recovery; Colloids and Surfaces A: Physicochem. Eng. Aspects480 (2015) 449461. 10.1016/j.colsurfa.2014.08.032Search in Google Scholar

12. Ko, K. M., Chon, B. H., Jang, S. B. and Jang, H. Y.: Surfactant flooding characteristics of dodecyl alkyl sulfate for enhanced oil recovery; Journal of Industrial and Engineering Chemistry20 (2014) 228233. 10.1016/j.jiec.2013.03.043Search in Google Scholar

13. Mandal, A., Kar, S. and Kumar, S.: Synergistic Effect of Mixed Surfactant (Tween 80 and SDBS) on Wettability Alteration of Oil Wet Quartz Surface; Journal of Dispersion Science and Technology37 (9) (2015) 12681276. 10.1080/01932691.2015.1089780Search in Google Scholar

14. Zhang, D. L., Liu, S., Puerto, M., Miller, C. A. and Hirasaki, G. J.: Wettability alteration and spontaneous imbibition in oil-wet carbonate formations; Journal of Petroleum Science and Engineering52 (2006) 213226. 10.1016/j.petrol.2006.03.009Search in Google Scholar

15. Falode, O. and Manuel, E.: Wettability Effects on Capillary Pressure, Relative Permeability, and Irredcucible Saturation Using Porous Plate; Hindawi Publishing Corporation Journal of Petroleum Engineering465418 (2014). 10.1155/2014/465418Search in Google Scholar

16. Somasundaran, P. and Zhang, L.: Adsorption of surfactants on minerals for wettability control in improved oil recovery processes; Journal of Petroleum Science and Engineering52 (2006) 198212. 10.1016/j.petrol.2006.03.022Search in Google Scholar

17. Bera, A., Mandal, A. and Kumar, T.: Effect of Rock-Crude oil-Fluid Interactions on Wettability Alteration of Oil-Wet Sandstone in Presence of Surfactants; Journal of Petroleum Science and Technology33 (5) (2015) 542549. 10.1080/10916466.2014.998768Search in Google Scholar

18. Price, L. C.: Aqueous solubility of petroleum as applied to its origin and primary migration, AAPG Bulletin60 (1976) 213244. 10.1306/83D922A8-16C7-11D7-8645000102C1865DSearch in Google Scholar

19. Al-Sahhaf, T., Elkamel, A., Ahmed, S. A. and Khan, A. R.: The influence of temperature, pressure, salinity and surfactant concentration on the interfacial tension of the n-octane-water system; Chemical Engineering Communications192 (2005) 667684. 10.1080/009864490510644Search in Google Scholar

20. Bai, J., Fan, W., Nan, G., Li, S. and Yu, B.: Influence of interaction between heavy oil components and petroleum sulfonate on the oil-water interfacial tension; Journal of Dispersion Science and Technology31 (2010) 551556. 10.1080/01932690903167475Search in Google Scholar

21. Prosser, A. J. and Franses, E. I.: Adsorption and surface tension of ionic surfactants at the air-water interface: review and evaluation of equilibrium models; Colloids and Surfaces A: Physicochemical and Engineering Aspects178 (2001) 140. 10.1016/S0927-7757(00)00706-8Search in Google Scholar

22. Blandamer, M. J., Cullis, P. M., Soldi, L. G., Engberts, J. B., KacperskaA., Van OsN. M. and Subha, M. C.: Thermodynamics of micellar systems: comparison of mass action and phase equilibrium models for the calculation of standard Gibbs energies of micelle formation; Adv. Colloid Interface Sci.58 (2–3) (1995) 171209. 10.1016/0001-8686(95)00252-LSearch in Google Scholar PubMed

23. Al-Anber, Z. A., Josep, B. A. and Mackie, A. D.: Prediction of the critical micelle concentration in a lattice model for amphiphiles using a single-chain mean-field theory; The Journal of Chemical Physics122 (2005) 104910. PMid:15836361; 10.1063/1.1860558Search in Google Scholar PubMed

24. Loginova, L. P., Samokhina, L. V., Boichenko, A. P. and Kulikov, A. U.: Micellar liquid chromatography retention model based on mass-action concept of micelle formation; Journal of Chromatography A1104 (2006) 190197. PMid:16376898; 10.1016/j.chroma.2005.11.135Search in Google Scholar PubMed

25. Slavchov, R. I. and Georgiev, G. S.: Markov chain model for the critical micelle concentration of surfactant mixtures; Colloid Polym Sci.292 (2014) 29272937. 10.1007/s00396-014-3337-2Search in Google Scholar

26. Evens, D. F. and Miller, D. D.: A reappraisal of the role of water in promoting amphiphilic assembly and structure, hydration phenomena in colloidal systems, Water science reviews: 4 Printed in Great Britain by the university press, Cambridge (1989). 10.1017/CBO9780511565373.001Search in Google Scholar

27. Danov, K. D., Kralchevsky, P. A. and Ananthapadmanabhan, K. P.: Micelle–monomer equilibria in solutions of ionic surfactants and in ionic-nonionic mixtures: A generalized phase separation model; Advances in Colloid and Interface Science206 (2014) 1745. PMid:23558017; 10.1016/j.cis.2013.02.001Search in Google Scholar PubMed

28. Lim, K. H.: Thermal Behavior of Critical Micelle Concentration from the Standpoint of Flory-Huggins Model, Bull. Korean Chem. Soc.30 (9) (2009) 20012006. 10.5012/bkcs.2009.30.9.2001Search in Google Scholar

29. Sahu, A., Choudhury, S., BeraA., Kar, S., Kumar, S. and Mandal, A.: Anionic-Nonionic Mixed Surfactant Systems: Micellar Interaction and Thermodynamic Behavior; Journal of Dispersion Science and Technology36 (8) (2015) 11561169. 10.1080/01932691.2014.958852Search in Google Scholar

30. Sulthana, S. B., Bhat, S. G. T. and Rakshit, A. K.: Thermodynamics of micellization of a non-ionic surfactant Myrj 45: effect of additives; Colloids and Surfaces A: Physicochemical and Engineering Aspects111 (1996) 5765. 10.1016/0927-7757(95)03491-9Search in Google Scholar

31. Sharma, K. S. and Rakshit, A. K.: Thermodynamics of micellization and interfacial adsorption of polyoxyethylene (10) lauryl ether (C12E10) in water; Indian journal of chemistry43A (2004) 265269. 35400011499101.0060Search in Google Scholar

32. Adane, D. F.: Surface and thermodynamic studies of micellization of surfactants in binary mixtures of 1, 2-ethanediol and 1, 2, 3-propanetriol with water, International Journal of Physical Sciences10 (8) (2015) 276288. 10.5897/IJPS2015.4288Search in Google Scholar

33. Zhang, H., Yao, M., Morrison, A. R. and Chong, S.: Commonly Used Surfactant, Tween 80, Improves Absorption of P-Glycoprotein Substrate, Digoxin, in Rats; Arch Pharm Res26 (9) (2003) 768772. PMid:14560928; 10.1007/BF02976689Search in Google Scholar PubMed

34. Lee, D., Kim, E. and Chang, H.: Effect of Tween surfactant components for remediation of toluene-contaminated groundwater; Geosciences Journal9 (3) (2005) 261267. 10.1007/BF02910586Search in Google Scholar

35. Kumar, G. P. and Pogaku, R.: Nonionic surfactant vesicular systems for effective drug Delivery-an overview; Acta Pharmaceutica Sinica B1 (4) (2011) 208219. 10.1016/j.apsb.2011.09.002Search in Google Scholar

36. Basheer, H. S., Mohamed, I. N. and Mowafaq, M. G.: Characterization of Microemulsions Prepared using Isopropyl Palmitate with various Surfactants and Cosurfactants; Tropical Journal of Pharmaceutical Research12 (3) (2013) 305310. 10.4314/tjpr.v12i3.5Search in Google Scholar

37. Weiszhár, Z., Judit, C., Csaba, R., László, R., János, S. and Zoltán, R.: Complement activation by polyethoxylated pharmaceutical surfactants: Cremophor-EL, Tween-80 and Tween-20; European Journal of Pharmaceutical Sciences45 (2012) 492498. PMid:21963457; 10.1016/j.ejps.2011.09.016Search in Google Scholar PubMed

38. Samanta, S. and Ghosh, P.: Coalescence of bubbles and stability of foams in aqueous solutions of Tween surfactants; Chemical Engineering Research and Design89 (2011) 23442355. 10.1016/j.cherd.2011.04.006Search in Google Scholar

39. Bak, A. and Podgórska, W.: Investigation of drop breakage and coalescence in the liquid–liquid system with nonionic surfactants Tween 20 and Tween80; Chemical Engineering Science74 (2012) 181191. 10.1016/j.ces.2012.02.021Search in Google Scholar

40. Patist, A., Kanicky, J. R., Shukla, P. K. and Shahy, D. O.: Importance of Micellar Kinetics in Relation to Technological Processes; Journal of Colloid and Interface Science245 (2002) 115. PMid:16290329; 10.1006/jcis.2001.7955Search in Google Scholar PubMed

41. Besseling, N. A. M. and Binks, B. P.: Statistical thermodynamics of adsorption, micellisation and solubilisation in water–oil–surfactant systems; Faraday Discuss. The Royal Society of Chemistry104 (1996) 167181. 10.1039/FD9960400167Search in Google Scholar

42. Mohajeri, E. and Noudeh, G. D.: Effect of Temperature on the Critical Micelle Concentration and Micellization Thermodynamic of Nonionic Surfactants: PolyoxyethyleneSorbitan Fatty Acid Esters; E-Journal of Chemistry9 (4) (2012) 22682274. 10.1155/2012/961739Search in Google Scholar

43. Sidim, T. and Acar, G.: Alcohols Effect on Critic Micelle Concentration of Polysorbate 20 and Cetyl Trimethyl Ammonium Bromine Mixed Solutions; Journal of Surfactants and Detergents16 (4) (2013) 601607. PMid:23794797; 10.1007/s11743-012-1429-xSearch in Google Scholar PubMed PubMed Central

44. Cases, J. M. and Villieras, F.: Thermodynamic model of ionic and nonionic surfactants adsorption-abstraction on heterogeneous surfaces; Langmuir8 (5) (1992) 12511264. 10.1021/la00041a005Search in Google Scholar

45. Lu, T., Lan, Y., Liu, C., Huang, J. and Wang, Y.: Surface properties, aggregation behavior and micellization thermodynamics of a class of gemini surfactants with ethyl ammonium headgroups; Journal of Colloid and Interface Science377 (2012) 222230. PMid:22513166; 10.1016/j.jcis.2012.03.044Search in Google Scholar PubMed

46. Mohamed, Z., Abubshait, S. A. and Bushlaibi, E. J.: Synthesis and Characterization of Some New Cationic Derivatives of Biological Interest; Journal of Surface Engineered Materials and Advanced Technology3 (3) (2013) 242248. 10.4236/jsemat.2013.33032Search in Google Scholar

47. Szymczyk, K. and Jańczuk, B.: The adsorption at solution–air interface and volumetric properties of mixtures of cationic and nonionic surfactants, Colloids and Surfaces A: Physicochemical and Engineering Aspects293 (1–3) (2007) 3950. 10.1016/j.colsurfa.2006.07.006Search in Google Scholar

48. Shah, V., Bharatiya, B., Shah, D. O. and Mukherjee, T.: Correlation of Dynamic Surface Tension with Sedimentation of PTFE Particles and Water Penetration in Powders, Langmuir31 (2015) 1372513733. PMid:26625137; 10.1021/acs.langmuir.5b03725Search in Google Scholar PubMed

49. Haiyang, Y. U., Wang, Y., Zhang, Y., Zhang, P. and Chen, W.: Effects of displacement efficiency of surfactant flooding in high salinity reservoir: interfacial tension, emulsification, adsorption; Advances in Petroleum Exploration and Development1 (2011) 3239. 10.3968/j.aped.1925543820110101.004Search in Google Scholar

50. Babu, K., Pal, N., Bera, A., Saxena, V. K. and Mandal, A.: Studies on interfacial tension and contact angle of synthesized surfactant and polymeric from castor oil for enhanced oil recovery; Applied Surface Science353 (2015) 11261136. 10.1016/j.apsusc.2015.06.196Search in Google Scholar

51. Jarrahian, K., Seiedi, O., Sheykhan, M., Sefti, M. V. and Ayatollahi, S.: Wettability alteration of carbonate rocks by surfactants: A mechanistic study; Colloids and surface A: Physicochem. Eng. Aspects410 (2012) 110. 10.1016/j.colsurfa.2012.06.007Search in Google Scholar

52. Standal, S., Haavik, J. and Blokhus, A.: Effect of polar organic components on wettability as studied by adsorption and contact angles; J. Pet. Sci. Eng.24 (1999) 131144. 10.1016/S0920-4105(99)00037-6Search in Google Scholar

53. Bera, A., Kissmathulla, S., Ojha, K., Kumar, T. and Mandal, A.: Mechanistic Study of Wettability Alteration of Quartz Surface Induced by Nonionic Surfactants and Interaction between Crude Oil and Quartz in the Presence of Sodium Chloride Salt; Energy & Fuels26 (2012) 36343643. 10.1021/ef300472kSearch in Google Scholar

54. Shedid, S. A. and Ghannam, M. T.: Factors affecting contact-angle measurement of reservoir rocks; Journal of Petroleum Science and Engineering44 (2004) 193203. 10.1016/j.petrol.2004.04.002Search in Google Scholar

Received: 2016-08-24
Accepted: 2017-01-17
Published Online: 2017-09-06
Published in Print: 2017-09-15

© 2017, Carl Hanser Publisher, Munich

Downloaded on 26.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/113.110514/pdf?lang=en
Scroll to top button