Startseite Effect of Surface Dilatational Modulus on Foam Flow in a Porous Medium
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of Surface Dilatational Modulus on Foam Flow in a Porous Medium

  • Yang Wang , Jijiang Ge , Guicai Zhang , Ping Jiang , Kaifei Song und Wen Zhang
Veröffentlicht/Copyright: 9. Dezember 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In order to clarify the role of surface dilatational property in foam flow in a porous medium, three systems were prepared: a system with low surface dilatational modulus and high surface tension, a system with low surface dilatational modulus and low surface tension, and a system with high surface dilatational modulus and low surface tension. By measuring the lamella number and pressure drop across the porous medium, it has been found that differing from flow in a capillary tube, a system with high surface dilatational modulus could achieve a high pressure drop in a porous medium. The conclusion drawn as to the reason is that bubbles with smaller diameter resulting from a structure induced breakup and high dilatational modulus are the main reasons. Flow experiments at 40°C also demonstrate the effect of surface dilatational modulus on the pressure drop.

Kurzfassung

Um die Rolle der Oberflächendilatation bei der Strömung von Schaum in einem porösen Medium zu untersuchen, wurden drei Systeme hergestellt: ein System mit niedrigem Oberflächen-Dilatationsmodul und hoher Oberflächenspannung, ein System mit niedrigem Oberflächen-Dilatationsmodul und geringer Oberflächenspannung und ein System mit hohem Oberflächen-Dilatationsmodul und geringer Oberflächenspannung. Durch die Messung der Lamellenzahl und des Druckabfalls über das poröse Medium konnte festgestellt werden, dass abweichend von der Schaumströmung in einer Kapillare das System mit einem hohen Oberflächen-Dilatationsmodul einen hohen Druckabfall in dem porösen Medium erzielt. Als die zwei wesentlichen Ursachen dafür werden Blasen mit kleinerem Durchmesser, die aus der durch die Struktur resultierenden Trennung entstehen, und der hohe Dilatationsmodul angesehen. Fließ-Experimente bei 40°C zeigen auch den Einfluss des Oberflächen-Dilatationsmoduls auf den Druckabfall.


*Correspondence address, Mr. Yang Wang China university of Petroleum (East China), E-Mail:

Yang Wang, doctor candidate of China university of Petroleum (East China), mainly study on enhanced oil recovery and oilfield chemistry.

Jijiang Ge, professor of China university of Petroleum (East China), mainly study on enhanced oil recovery and oilfield chemistry.

Guicai Zhang, professor of China university of Petroleum (East China), mainly study on enhanced oil recovery and oilfield chemistry.

Ping Jiang, assisted professor of China university of Petroleum (East China), mainly study on enhanced oil recovery and oilfield chemistry.

Kaifei Song, graduate student of China university of Petroleum (East China), mainly study on enhanced oil recovery and oilfield chemistry.

Wen Zhang, graduate student of China university of Petroleum (East China), mainly study on enhanced oil recovery and oilfield chemistry.


References

1. Hirasaki, G. J. and Lawson, J. B.: Mechanisms of foam flow in porous media – apparent viscosity in smooth capillaries. Society of Petroleum Engineers Journal25 (2) (2013) 176190. 10.2118/12129-PASuche in Google Scholar

2. Saintjalmes, A.: Physical chemistry in foam drainage and coarsening. Soft Matter2 (2) (2006) 836849. 10.1039/B606780HSuche in Google Scholar

3. Koehler, S. A., Hilgenfeldt, S. and Stone, H. A.: Liquid flow through aqueous foams: the node-dominated foam drainage equation. Physical Review Letters82 (21) (1999) 42324235. 10.1103/PhysRevLett.82.4232Suche in Google Scholar

4. Safouane, M., Saint-Jalmes, A., Bergeron, V. and Langevin, D.: Viscosity effects in foam drainage: newtonian and non-newtonian foaming fluids. European Physical Journal E19 (2) (2006) 195202.PMid:16505946; 10.1140/epje/e2006-00025-4Suche in Google Scholar

5. Saintjalmes, A. and Langevin, D.: Time evolution of aqueous foams: drainage and coarsening. Journal of Physics Condensed Matter14 (40) (2002) 93979412. S0953-8984(02)36448-8Suche in Google Scholar

6. Pitois, O., Fritz, C. and Vignes-Adler, M.: Liquid drainage through aqueous foam: study of the flow on the bubble scale. Journal of Colloid and Interface Science282 (2) (2005) 458465.PMid:15589553; 10.1016/j.jcis.2004.08.187Suche in Google Scholar PubMed

7. Pitois, O., Fritz, C. and Vignes-Adler, M.: Hydrodynamic resistance of a single foam channel, Colloids Surf. A261 (2005) 109. 10.1016/j.colsurfa.2004.11.045Suche in Google Scholar

8. Pitois, O., Fritz, C. and Vignes-Adler, M.: Hydrodynamic resistance of a single foam channel. Colloids Surfaces A Physicochemical & Engineering Aspects261 (1) (2005) 109114. 10.1016/j.colsurfa.2004.11.045Suche in Google Scholar

9. Lucassen, J.: Anionic Surfactants: Physical Chemistry of Surfactant Action, ed. E. H.Lucassen-Reynders, Dekker, New York, 1981, pp. 11.Suche in Google Scholar

10. Golemanov, K., Denkov, N. D., Tcholakova, S., Vethamuthu, M. and Lips, A.: Surfactant mixtures for control of bubble surface mobility in foam studies. Langmuir24 (18) (2008) 99569961.PMid:18698860; 10.1021/la8015386Suche in Google Scholar PubMed

11. Petrov, J. G., Thomas Pfohl, A. and Möhwald,H.: Ellipsometric chain length dependence of fatty acid langmuir monolayers. a heads-and-tails model. J. Phys. Chem. B103 (17) (1999) 34173424. 10.1021/jp984393oSuche in Google Scholar

12. Weaire, D.: The rheology of foam. Current Opinion in Colloid & Interface Science13 (3) (2008) 171176. 10.1016/j.cocis.2007.11.004Suche in Google Scholar

13. Weaire, D. and Drenckhan, W.: Structure and dynamics of confined foams: a review of recent progress. Advances in Colloid & Interface Science137 (1) (2008) 2026.PMid:17659249; 10.1016/j.cis.2007.04.001Suche in Google Scholar

14. Hohler, R. and Cohenaddad, S.: Rheology of liquid foam. Journal of Physics Condensed Matter17 (41) (2005) R1041R1069 (29). 10.1088/0953-8984/17/41/R01Suche in Google Scholar

15. Langevin, D.: Aqueous foams: a field of investigation at the frontier between chemistry and physics. Chemphyschem9 (4) (2008) 510522.PMid:18275064; 10.1002/cphc.200700675Suche in Google Scholar

16. Bergeron, V.: Disjoining pressures and film stability of alkyltrimethylammonium bromide foam films. Langmuir13 (13) (1997) 34743482. 10.1021/la970004qSuche in Google Scholar

17. Vrij, A. and Overbeek, J. T. G.: Rupture of thin liquid films due to spontaneous fluctuations in thickness. J. Am. Chem. Soc.90 (12) (1968) 30743078. 10.1021/ja01014a015Suche in Google Scholar

18. De Vries, A. J.: Foam stability, part iv: kinetics and activation energy of film rupture. Plant Physiology64 (1) (1979) 18. 10.1002/recl.19580770412Suche in Google Scholar

19. Zinati, F. F., Farajzadeh, R. and Zitha, P. L. J.: Foam modeling in heterogeneous reservoirs using stochastic bubble population approach[C]//SPE Symposium on Improved Oil Recovery. Society of Petroleum Engineers, 2008. 10.2118/113358-MSSuche in Google Scholar

20. Kovscek, A. R., Patzek, T. W. and Radke, C. J.: A mechanistic population balance model for transient and steady-state foam flow in Boise sandstone [J]. Chemical Engineering Science50 (23) (1995) 37833799. 10.1016/0009–2509(95)00199-FSuche in Google Scholar

21. Zitha, P. L. J.: A new stochastic bubble population model for foam in porous media[C]//SPE/DOE Symposium on Improved Oil Recovery. Society of Petroleum Engineers, 2006.10.2118/98976-MSSuche in Google Scholar

22. Stenvot, C. and Langevin, D.: Study of viscoelasticity of soluble monolayers using analysis of propagation of excited capillary waves, Langmuir4 (1988) 1179118. 10.1021/la00083a022Suche in Google Scholar

23. Ravera, F., Loglio, G. and Kovalchuk, V. I.: Interfacial dilational rheology by oscillating bubble/drop methods, Current Opinion in Colloid & Interface Science15 (2010) 217228. 10.1016/j.cocis.2010.04.001Suche in Google Scholar

24. Hirasaki, G. J. and Lawson, J. B.: Mechanisms of foam flow in porous media: apparent viscosity in smooth capillaries. Society of Petroleum Engineers Journal25 (02) (1985) 176190. 10.2118/12129-PASuche in Google Scholar

25. Denkov, N. D., Subramanian, V., Gurovich, D. and Lips, A.: Wall slip and viscous dissipation in sheared foams: effect of surface mobility. Colloids & Surfaces A Physicochemical & Engineering Aspects263 (1–3) (2005) 129145. 10.1016/j.colsurfa.2005.02.038Suche in Google Scholar

26. Golemanov, K., Denkov, N. D., Tcholakova, S., Vethamuthu, M. and Lips, A.: Surfactant mixtures for control of bubble surface mobility in foam studies. Langmuir24 (18) (2008) 99569961.PMid:18698860; 10.1021/la8015386Suche in Google Scholar PubMed

27. Haab, R.: Aqueous foam slip and shear regimes determined by rheometry and multiple light scattering. Journal of Rheology52 (52) (2008) 1091. 10.1122/1.2952510Suche in Google Scholar

28. Tcholakova, S., Denkov, N. D., Golemanov, K., Ananthapadmanabhan, K. P. and Lips, A.: Theoretical model of viscous friction inside steadily sheared foams and concentrated emulsions. Physical Review E Statistical Nonlinear & Soft Matter Physics78 (1Pt1) (2008) 902904.PMid:18763954; 10.1103/PhysRevE.78.011405Suche in Google Scholar PubMed

Received: 2016-06-16
Accepted: 2017-02-08
Published Online: 2017-12-09
Published in Print: 2017-07-14

© 2017, Carl Hanser Publisher, Munich

Heruntergeladen am 26.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/113.110508/pdf?lang=de
Button zum nach oben scrollen