Startseite Surface Activity Study of Water-Soluble Silk Fibroin Prepared using Cocoons and Ca(NO3)2 · 4H2O
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Surface Activity Study of Water-Soluble Silk Fibroin Prepared using Cocoons and Ca(NO3)2 · 4H2O

  • Fengguang Li , Junsheng Li , Guoxia Huang , Wei Wang , Wenxiu Dong und Liujuan Yan
Veröffentlicht/Copyright: 9. Dezember 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The objective of this study was to analyze the relationship between structural changes and surface-activity of water-soluble silk fibroin prepared by treatment with calcium nitrate tetrahydrate (Ca(NO3)2 · 4 H2O). Ca(NO3)2 · 4 H2O, is a hygroscopic compound at room temperature and a suitable solvent upon melting at 100 °C, which was traditionally used as a solvent for dissolving cocoons or silk. The cocoons or silk were optimally dissolved by Ca(NO3)2 · 4 H2O when using a 40 % (w/w) Ca(NO3)2 solution, a 1 : 10 ratio of cocoons or silk to solvent and a dissolving time of 69 min. The results showed that the hydrophobic region of the silk fibroin was destroyed, resulting in the exposure of the hydrophobic groups. The emulsifying ability and the emulsion stability as well as the foaming ability and the foam stability, and the γCMC and CMC of soluble silk fibroin were 92.8 %, 97.3 %, 213.3 %, 88.1 %, 65.83 mN/m and 0.42 mg/mL, respectively. The molecular conformation of silk fibroin chains was the β-sheet, as shown by the intense amide I–III bands at 3 163 cm−1, 1 627 cm−1, 1 518 cm−1, and 1 231 cm−1. The random coil/α-helix structure induced from Ca(NO3)2 convert to β-sheet conformation. Owing to the calcium nitrate's dissolution, silk fibroin can be dissolved in water by changing its structure, and shows excellent surface activity.

Kurzfassung

Ziel dieser Studie war es, die Beziehung zwischen den Strukturveränderungen und der Oberflächenaktivität des wasserlöslichen Seidenproteins, das durch Behandlung mit Calciumnitrattetrahydrat (Ca(NO3)2 · 4H2O) hergestellt wird, zu untersuchen. Ca(NO3)2 · 4H2O ist eine bei Raumtemperatur hygroskopische Verbindung und ein für die Schmelze bei 100 °C geeignetes Lösemittel, das traditionell als Lösungsmittel zum Auflösen von Kokons oder Seide verwendet wurde. Die Kokons oder Seide wurden in einer 40 % igen (w/w) Ca(NO3)2 · 4H2O-Lösung, bei einem Verhältnis der Kokons (oder Seide) zum Lösemittels von 1 : 10 und einer Auflösungszeit von 69 min optimal gelöst. Die Ergebnisse zeigten, dass der hydrophobe Bereich des Seidenproteins zerstört wurde, was zur Freilegung der hydrophoben Gruppen führte. Die Emulgierfähigkeit und die Emulsionsstabilität, das Schaumvermögen und die Schaumstabilität sowie die kritische Mizellenbildungskonzentration (CMC) und die Oberflächenspannung bei der CMC (γCMC) des löslichen Seidenproteins betrugen: 92,8 %, 97,3 %, 213,3 %, 88,1 %, 0,42 mg mg−1 bzw. 65,83 mN m−1. Die Seidenproteinketten waren als β-Blatt-Struktur angeordnet, wie die intensiven Amid-I-III-Banden bei 3163 cm−1, 1627 cm−1, 1518 cm−1 und 1231 cm−1 zeigen. Die durch Ca(NO3)2 zufällig induzierte α-Helixstruktur wurde in die β-Blatt-Struktur umgewandelt. Durch die Auflösung des Calciumnitrats kann das Seidenseidenprotein über eine Strukturumwandlung in Wasser gelöst werden und hat dann eine ausgezeichnete Oberflächenaktivität.


*Correspondence address, Dr. Junsheng Li, Department of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, P. R. China, Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Key Laboratory for Processing of Sugar Resources of Guangxi Higher Education Institutes, Guangxi University of Science and Technology, E-Mail:

References

1. Horan, R. L., Collette, A. L., Lee, C., Antle, K., Chen, J. S. and Altman, G. H.: Yarn design for functional tissue engineering. Journal of Biomech.39 (2006) 22322240.PMid:16182301; 10.1016/j.jbiomech.2005.07.007Suche in Google Scholar PubMed

2. Yang, M., Shuai, Y., He, W., Min, S. J. and Zhu, L. J.: Preparation of porous scaffolds from silk fibroin extracted from the silk gland of bombyx mori (B. mori). Int. J. Mol. Sci.13 (2012) 77627775.PMid:22837725; 10.3390/ijms13067762Suche in Google Scholar PubMed PubMed Central

3. Tsukada, M., Freddi, G., Gotoh, Y. and Kasai, N.: Physical and chemical properties of tussah silk fibroin films. Polym. Sci. Part B: Polym. Physics. 32 (1994) 14071412. 10.1002/polb.1994.090320812Suche in Google Scholar

4. Liu, H. J., Wise, S. G. J.Kovacina, R., Kaplan, D. L., Bilek, M. M. M., Weiss, A. S., Fei, J. and Bao, S. S.: Biocompatibility of silk-tropoelastin protein polymers. Biomaterials.35 (2014) 51385147.PMid:24702962; 10.1016/j.biomaterials.2014.03.024Suche in Google Scholar PubMed

5. Fraser, R. D. B. and Macrae, T. P.: Conformation in fibrous proteins and related synthetic polypeptides, Science184 (1973) 293343. 10.1126/science.184.4142Suche in Google Scholar

6. Ki, C. S., Lee, K. H., Baek, D. H., Hattori, M., Um, I. C., Ihm, D. W. and Park, Y. H.: Dissolution and wet spinning of silk fibroin using phosphoric acid/formic acid micture solvent system. Appl. Polym. Sci.105 (2007) 16051610. 26176. 10.1002/appSuche in Google Scholar

7. Freddi, G., Pessina, G. and Tsukada, M.: Swelling and dissolution of silk fibroin (Bombyx mori) in N-methyl morpholine N-oxide. Biol. Macromol.24 (1999) 251263. 10.1016/S0141-8130(98)00087-7Suche in Google Scholar PubMed

8. Ha, S. W., Park, Y. H. and Hudson, S. M.: Dissolution of Bombyx mori silk fibroin in the calcium nitrate tetrahydrate-methanol system and aspects of wet spinning of fibroin solution. Biomacromolecules4 (2003) 488496.PMid:1274–1761; 10.1021/bm0255948Suche in Google Scholar PubMed

9. Junsheng, L. and Haitao, C.: Studying on Preparation and Emulsifying Properties of Silk Protein Calcium Salt Made from Waste Silk Advanced Materials Research, 197–198 (2011) 6064. 10.4028/www.scientific.net/AMR.197-198.60Suche in Google Scholar

10. Yamada, H., Nakao, H. and Takasu Tsubouchi, Y. K.: Preparation of undegraded native molecular fibroin solution from silkworm cocoons. Mat. Sci. Eng. C14 (2001) 4146. 10.1016/S0928-4931(01)00207-7Suche in Google Scholar

11. Pearce, K. N. and Kinsella, J. E.: Emulsifying properties of proteins: evaluation of a turbidimetric technique. J. Agric. Food Chem.26 (1978) 716723. 10.1021/jf60217a041Suche in Google Scholar

12. Matsushita, M., Irino, T., Komoda, T. and Sakagishi, Y.: Determination of proteins by a reverse biuret method combined with the copper-bathocuproine chelate reaction. Clin. Chim. Acta.216 (1993) 103111. 10.1016/0009-8981(93)90143-RSuche in Google Scholar PubMed

13. Rossen, S.: Surface tension, interfacial tension and contact angles of ionic liquids. Current Opinion in Colloid and Interface Science. 16 (2011) 310316. 10.1016/j.cocis.2011.01.011Suche in Google Scholar

14. Karaca, A. C., Low, N. and Nickerson, M.: Emulsifying properties of chichpea, faba bean, lentil and pea proteins produced by isoelectric precipitation and salt extraction. Food Res. Int.44 (2011) 27422750. 10.1016/j.foodres.2011.06.012Suche in Google Scholar

15. Bora, P. S.: Functional properties of native and succinylated lentil (Lens culinaris) globulins. Food Chem.77 (2002) 171176. 10.1016/S0308-8146(01)00332-6Suche in Google Scholar

16. Vioque, R. S., Clemente, A., Vioque, J., Bautista, J. and Millan, F.: Protein isolates from chickpea (Cicer arietinum L.) chemical composition, functional properties and protein characterization. Food Chem.64 (1999) 237243. 10.1016/S0308-8146(98)Suche in Google Scholar

17. Arogundade, L. A., Akinfenwa, M. O. and Salawu, A. A.: Effect of NaCl and its partial or complete replacement with KCl on some functional properties of defatted Colocynthis citrullus L. Food Chem.84 (2004) 187193. 10.1016/S0308–8146Suche in Google Scholar

18. Magoshi, J. and Nakamura, S.: Polym.Physical properties and structure of silk.VIII. Effect of casting temperature on conformation of wild silk fibroin films. Journal of Polymer Science: Polymer Physics Edition23 (1985) 227229. 10.1002/pol.1985.180230120Suche in Google Scholar

19. Chen, Y. Y., Sheng, J. Y., Hu, F. X. and Zhang, J.: Study on the Morphological Structure of Silk Fibers under Calcium Salt. Journal of Textile Science.20 (1999) 1214. 10.13475/j.fzxb.1999.03.003Suche in Google Scholar

20. Tanaka, T., Magoshi, J., Magoshi, Y., Inoue, S. I., Kobayashi, M., Tsuda, H., Becker, M. A. and Nakamura, S.: Thermal properties of bombyx mori and several wild silkworm silks phase transition of liquid silk. Therm. Anal. Calorim.70 (2002) 825832. 10.1023/A:1022256203778Suche in Google Scholar

21. Wei, T., Li, M. Z. and Zhao, C. X.: Structure and properties of regenerated Antheraea perny silk fibroin in aqueous solution. Biol. Macromol.40 (2007) 472478. 10.1016/j.ijbiomac.2006.11.006Suche in Google Scholar PubMed

22. Ha, S. W., Tonelli, A. E. and Hudson, S. M.: Structural studies of bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning. Biomacromolecules.6 (2005) 17221731.PMid:15877399; 10.1021/bm050010ySuche in Google Scholar PubMed

23. Tsukada, M., Gotoh, Y., Nagura, M., Minoura, N., Kasai, N. and Freddi, G.: Structural Changes of silk fibroin membranes induced by immersion in methanol aqueous solutions. Polym. Sci., Part B: Polym. Phys.32 (1994) 961968. 10.1002/polb.1994.090320519Suche in Google Scholar

Received: 2016-06-28
Accepted: 2017-04-28
Published Online: 2017-12-09
Published in Print: 2017-07-14

© 2017, Carl Hanser Publisher, Munich

Heruntergeladen am 26.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/113.110512/html
Button zum nach oben scrollen