Physicochemical Properties of Amino Acid Surfactants and Their Use in Dyeing with Natural Plant Dyes
-
Li-Huei Lin
, Shuenn-Kung Su , Yu-Ching Lai and Yong-Han Yang
Abstract
Environment-friendly green amino acid surfactants were prepared by the reaction of glutamic acid with various fatty acids (C2–C14). These green amino acid surfactants have been found to exhibit good surface activities i.e. surface tension, foaming, wetting power and emulsifying ability. The critical micelle concentration (CMC) increases with an increase of the alkyl chain of amino acid surfactants. After 5 days the biodegradation of these amino acid surfactants was larger than 60% and consequently, the surfactants should be regarded as readily biodegradable. Finally, the green amino acid surfactants were added to natural plant dyes to test their applicability for dyeing wool fibers. The surfactant developed in this study will contribute to green and sustainability chemistry.
Kurzfassung
Umweltfreundliche grüne Aminosäure-Tenside wurden durch die Reaktion von Glutaminsäure mit verschiedenen Fettsäuren (C2-C14) hergestellt. Es wurde gefunden, dass diese grünen Aminosäure-Tenside gute Oberflächeneigenschaften (Oberflächenspannung, Schaumbildung, Benetzungs- und Emulgierfähigkeit) zeigen. Die kritische Mizellenkonzentration (CMC) nimmt mit länger werdender Alkylkettenlänge der Aminosäure-Tenside zu. Nach 5 Tagen war der biologische Abbau dieser Aminosäure-Tenside größer als 60% und folglich sollten die Tenside als leicht biologisch abbaubar eingestuft werden. Schließlich wurden die Aminosäure-Tenside natürlichen Pflanzenfarbstoffen zugegeben, um zu testen, ob sie beim Färben von Wolle eingesetzt werden können. Die in dieser Studie entwickelten Tenside werden zur grünen und nachhaltigen Chemie beitragen.
References
1. Lin, L. H. and Chen, K. M.: Surface activity and water repellency properties of cleavable-modified silicone surfactants, Coll. Surf. A275 (2006) 99. 10.1016/j.colsurfa.2005.09.032Search in Google Scholar
2. Attwood, D. and Florence, A. T.: Surfactant Systems, Chapman and Hall Co., 1983, pp. 1. 0.1007/978-94-009-5775-6Search in Google Scholar
3. Peters, R. H.: Textile Chemistry, vol. 3, Elsevier, 1975.Search in Google Scholar
4. Lai, C. C. and Chen, K. M.: Preparation and surface activity of polyoxyethylene-carboxylated modified Gemini surfactants, Coll. Surf. A320 (2008) 6. 10.1016/j.colsurfa.2007.12.056Search in Google Scholar
5. Wagenaar, A. and Engberts, J. B. F. N.: Synthesis of nonionic reduced-sugar based bola amphiphiles and gemini surfactants with an α,ω-diamino-(oxa)alkyl spacer, Tetrahedron63 (2007) 10622. 10.1016/j.tet.2007.08.023Search in Google Scholar
6. Yoshimura, T., Bong, M., Matsuoka, K., Honda, C. and Endo, K.: Surface properties and aggregate morphology of partially fluorinated carboxylate-type anionic gemini surfactants, J. Colloid Interface Sci.339 (2009) 230. 10.1016/j.jcis.2009.07.054Search in Google Scholar PubMed
7. Sharma, S. C., Tsuchiya, K., Sakai,K.Sakai,H. and Abe, M.: Viscoelastic wormlike micellar solutions in mixed environmentally friendly nonionic surfactant systems, Coll. Surf. A335 (2009) 23. 10.1016/j.colsurfa.2008.10.022Search in Google Scholar
8. Nainggolan, I., Radiman, S., Hamzah, A. S. and Hashim, R.: The effect of the head group on branched-alkyl chain surfactants in glycolipid/n-octane/water ternary system, Coll. Surf. B73 (2009) 84. 10.1016/j.colsurfb.2009.05.021Search in Google Scholar PubMed
9. Wang, S. F., Furuno, T. and Cheng, Z.: Synthesis of new amino acid-type amphoteric surfactants from tall oil fatty acid, J Wood Sci47 (2001) 470. 10.1007/BF00767900Search in Google Scholar
10. Bordes, R. and Holmberg, K.: Amino acid-based surfactants – do they deserve more attention?Adv. Colloid. Interfac.222 (2015) 79. 10.1016/j.cis.2014.10.013Search in Google Scholar PubMed
11. Faustino, C. M. C., Calado, A. R. T. and Luis, G. R.: Dimeric and monomeric surfactants derived from sulfur-containing amino acids. J. Colloid. Interf. Sci.351 (2010) 472. 10.1016/j.jcis.2010.08.007Search in Google Scholar PubMed
12. Sharma, K. and Chauhan, S.: Effect of biologically active amino acids on the surface activity and micellar properties of industrially important ionic surfactants, Coll. Surf. A453 (2014) 78. 10.1016/j.colsurfa.2014.04.003Search in Google Scholar
13. Branco, M. A., Pinheiro, L. and Faustino, C.: Amino acid-based cationic gemini surfactant–protein interactions Coll. Surf. A480 (2015) 105. 10.1016/j.colsurfa.2014.12.022Search in Google Scholar
14. Brito, R. O., Silva, S. G., Fernandes, R. M. F., Marques, E. F., Borges, J. E. and do Vale, M. L. C.: Enhanced interfacial properties of novel amino acid-derived surfactants: Effects of headgroup chemistry and of alkyl chain length and unsaturation, Coll. Surf. B86 (2011) 65. 10.1016/j.colsurfb.2011.03.017Search in Google Scholar PubMed
15. Pérez,L., Pinazo, A., Pons, R. and Infante, M. R.: Gemini surfactants from natural amino acids, Adv. Colloid. Interfac.205 (2014) 134. 10.1016/j.cis.2013.10.020Search in Google Scholar PubMed
16. Aslam, J., Siddiqui, U. S., Bhat, I. A. and Din, K.: Molecular interactions of cationic gemini surfactants (m-s-m) with an environmental friendly nonionic sugar-based surfactant (β-C12G): Interfacial, micellar and aggregation behavior, J. Ind. Eng. Chem205 (2014) 134. 10.1016/j.jiec.2013.12.088Search in Google Scholar
17. Bordes, R. and Holmberg, K.: Physical chemical characteristics of dicarboxylic amino acid-based surfactants, Coll. Surf. A391 (2011) 32. 10.1016/j.colsurfa.2011.03.023Search in Google Scholar
18. Ampatzidis, C. D., Varka, E. M. A. and Karapantsios, T. D.: Interfacial activity of amino acid-based glycerol ether surfactants and their performance in stabilizing O/W cosmetic emulsions, Coll. Surf. A460 (2014) 176. 10.1016/j.colsurfa.2014.02.033Search in Google Scholar
19. Yoshimura, T., Ichinokawa, T., Kaji, M. and Esumi, K.: Synthesis and surface-active properties of sulfobetaine-type zwitterionic gemini surfactants, Coll. Surf. A273 (2006) 208. 10.1016/j.colsurfa.2005.08.023Search in Google Scholar
20. Nyuta, K., Yoshimura, T. and Esumi, K.: Surface tension and micellization properties of heterogemini surfactants containing quaternary ammonium salt and sulfobetaine moiety, J. Colloid. Interf. Sci.301 (2006) 267. 10.1016/j.jcis.2006.04.075Search in Google Scholar PubMed
21. Lin, L. H. and Chou, Y. S.: Surface activity and emulsification properties of hydrophobically modified dextrins, Coll. Surf. A364 (2010) 55. 10.1016/j.colsurfa.2010.04.033Search in Google Scholar
22. Zana, R.: Critical Micellization Concentration of Surfactants in Aqueous Solution and Free Energy of Micellization, Langmuir K (1996) 1208. 10.1021/la950691qSearch in Google Scholar
23. Ferrer, M., Comelles, F., Plou, F. J., Cruces, M. A., Fuentes, G., Parra, J. L. and Ferrer, A. B.: Comparative Surface Activities of Di- and Trisaccharide Fatty Acid Esters. Langmuir18 (2002) 667. 10.1021/la010727gSearch in Google Scholar
24. Zhang, T. and Marchant, R. E.: Novel polysaccharide surfactants: The effect of hydrophobic and hydrophilic chain length on surface active properties. J. Colloid Interface Sci.177 (1996) 419. 10.1006/jcis.1996.0054Search in Google Scholar
25. Chauhan, V., Singh, S. and Bhadani, A.: Synthesis, characterization and surface properties of long chain β-hydroxy-γ-alkyloxy-N-methylimidazolium surfactants, Colloids Surf. A395 (2012) 1. 10.1016/j.colsurfa.2011.11.022Search in Google Scholar
26. Nyuta, K., Yoshimura, T. and Esumi, K.: Surface tension and micellization properties of heterogemini surfactants containing quaternary ammonium salt and sulfobetaine moiety, J. Colloid. Interf. Sci.301 (2006) 267. 10.1016/j.jcis.2006.04.075Search in Google Scholar PubMed
27. Lin, L. H. and Lai, Y. C.: Synthesis and physicochemical properties of nonionic Gemini surfactants with a sulfonate spacer, Coll. Surf. A386 (2011) 65. 10.1016/j.colsurfa.2011.06.031Search in Google Scholar
28. Toledano, O. and Magdassi, S.: Formation of Surface Active Gelatin by Covalent Attachment of Hydrophobic Chains, J. Colloid. Interf. Sci.193 (1997) 172. 10.1006/jcis.1997.5030Search in Google Scholar PubMed
29. Asakawa, T., Okada, T., Hayasaka, T., Kuwamoto, K., Ohta, A. and Miyagishi, S.: The Unusual Micelle Micropolarity of Partially Fluorinated Gemini Surfactants Sensed by Pyrene Fluorescence. Langmuir22 (2006) 6053. 10.1021/la060787sSearch in Google Scholar PubMed
30. Su, S. K., Lin, L. H. and Lai, Y. C.: Surface Activity and Cleavability of Gemini Surfactants Featuring Hydrophilic Spacer Groups, J. Surfact Deterg15 (2012) 745. 10.1007/s11743-012-1400-xSearch in Google Scholar
31. Tawfik, S. M.: Synthesis, surface, biological activity and mixed micellar phase properties of some biodegradable gemini cationic surfactants containing oxycarbonyl groups in the lipophilic part, J. Ind. Eng. Chem.28 (2015) 171. 10.1016/j.jiec.2015.02.011Search in Google Scholar
32. Zhu, J. H., Zhang, B., Fang, W. W., Lao, Z. J. and Yu, H.: Characterization of amphoteric multilayered thin films by means of zeta potential measurements, Colloid Surf. B: Biointerfaces43 (2005) 1. 10.1016/j.colsurfb.2005.03.010Search in Google Scholar PubMed
33. Toledano, O. and Magdassi, S.: Emulsification and foaming properties of hydrophobically modified gelatin. J. Colloid Interface Sci.200 (1998) 235. 10.1006/jcis.1997.5376Search in Google Scholar
34. Ottlik, M. P., Frackowiak, R., Maliszewska, I., Kołwzan, B. and Wilk, K. A.: Ecotoxicity and biodegradability of antielectrostatic dicephalic cationic surfactants, Chemosphere89 (2012) 1103. 10.1016/j.chemosphere.2012.05.090Search in Google Scholar PubMed
© 2017, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Detergent/Cleaning
- Consumers' Comprehension of the EU Energy Label for Washing Machines
- Effect of Washing Conditions on Cleaning Action of Linear Alkylbenzene Sulfonate in Hard Water
- Biosurfactants/Novel Surfactants
- Surface Activity Study of Water-Soluble Silk Fibroin Prepared using Cocoons and Ca(NO3)2 · 4H2O
- Experimental Design Procedure for Optimization of Saponin Extraction from Glycyrrhiza glabra: A Biosurfactant for Emulsification of Heavy Crude Oil
- Studies on Emulsification Properties of Glycolipids Biosurfactants
- Synthesis and Characterization of Saturated Cardanol Sulfonate Salt Gemini Surfactant
- Physical Chemistry
- Effect of Surface Dilatational Modulus on Foam Flow in a Porous Medium
- Oil-Water Interfacial Tensions of Silica Nanoparticle-Surfactant Formulations
- Interactions of Cationic, Anionic and Nonionic Surfactants with Cresol Red Dye in Aqueous Solutions: Conductometric, Tensiometric, and Spectroscopic Studies
- Application
- Physicochemical Properties of Amino Acid Surfactants and Their Use in Dyeing with Natural Plant Dyes
- Short Communication
- Demulsification of Water-in-Heavy Crude Oil Emulsion using Amphiphilic Ammonium Salts as Demulsifiers
Articles in the same Issue
- Contents/Inhalt
- Contents
- Detergent/Cleaning
- Consumers' Comprehension of the EU Energy Label for Washing Machines
- Effect of Washing Conditions on Cleaning Action of Linear Alkylbenzene Sulfonate in Hard Water
- Biosurfactants/Novel Surfactants
- Surface Activity Study of Water-Soluble Silk Fibroin Prepared using Cocoons and Ca(NO3)2 · 4H2O
- Experimental Design Procedure for Optimization of Saponin Extraction from Glycyrrhiza glabra: A Biosurfactant for Emulsification of Heavy Crude Oil
- Studies on Emulsification Properties of Glycolipids Biosurfactants
- Synthesis and Characterization of Saturated Cardanol Sulfonate Salt Gemini Surfactant
- Physical Chemistry
- Effect of Surface Dilatational Modulus on Foam Flow in a Porous Medium
- Oil-Water Interfacial Tensions of Silica Nanoparticle-Surfactant Formulations
- Interactions of Cationic, Anionic and Nonionic Surfactants with Cresol Red Dye in Aqueous Solutions: Conductometric, Tensiometric, and Spectroscopic Studies
- Application
- Physicochemical Properties of Amino Acid Surfactants and Their Use in Dyeing with Natural Plant Dyes
- Short Communication
- Demulsification of Water-in-Heavy Crude Oil Emulsion using Amphiphilic Ammonium Salts as Demulsifiers