Synthesis and Characterization of Saturated Cardanol Sulfonate Salt Gemini Surfactant
-
Yawen Zhou
Abstract
The synthesis, structural analysis and properties of saturated cardanol sulfonate salt Gemini surfactant (Gemini-SCSS) were described and compared with saturated cardanol sulfonate salt (SCSS). The structure was characterized by infrared spectra and proton nuclear magnetic resonance. Gemini-SCSS reduced the surface tension of water to a minimum value of approximately 35 – 37 mN m−1 with concentrations of (0.9 − 2.0) × 10−4 mol L−1 and displayed low foamability and high emulsification, which were better than those of SCSS. Finally, Gemini-SCSS and SCSS both demonstrated good resistance to acid, alkali, hard water.
Kurzfassung
Die Synthese, die Struktur analyse und die Eigenschaften des gesättigten Cardanolsulfo natsalz-Geminitensids (Gemini-SCSS) wurden beschrieben und mit gesättigtem Cardanolsulfonatsalz-Tensid (SCSS) verglichen. Die Struktur wurde durch Infrarotspektren und Protonen-Kern resonanz charakterisiert. Gemini-SCSS reduzierte die Oberflächenspannung von Wasser auf einen Mindestwert von ca. 35 – 37 mN m−1, wobei die Gemini-SCSS-Konzentration (0,9 – 2,0) × 10−4 mol L−1 betrug. Gemini-SCSS zeigte ein geringes Schaumvermögen und eine hohe Emulsionsbildung, die besser als die von SCSS ist. Schließlich zeigten sowohl Gemini-SCSS als auch SCSS eine gute Resistenz gegen Säure, Alkali und hartes Wasser.
References
1. Phani, P. K., Paramashivappa, R. and Vithayathil, P. J.: Process for isolation of cardanol from technical cashew (Anacardium occidentale L.) nut shell liquid, J Agric Food Chem50 (2002) 4705–4708. 10.1021/jf020224wSearch in Google Scholar PubMed
2. Voirin, C., Caillol, S. and Sadavarte, N. V.: Functionalization of cardanol: towards bio based polymers and additives, Polymer Chemistry.5 (2014) 3142–3162. 10.1039/c3py01194aSearch in Google Scholar
3. Kim, S.: The reduction of formaldehyde and VOCs emission from wood-based flooring by green adhesive using cashew nut shell liquid (CNSL), Journal of Hazardous Materials182 (2010) 919–922.PMid:20362392; 10.1016/j.jhazmat.2010.03.003Search in Google Scholar PubMed
4. Balgude, D., Konge, K. and Sabnis, A.: Synthesis and characterization of sol-gel derived CNSL based hybrid anti-corrosive coatings, Journal of Sol-gel Science and Technology69 (2014) 155–165. 10.1007/s10971-013-3198-zSearch in Google Scholar
5. Yuliana, M., Ngoc, Y. T. T. and Ju, Y. H.: Effect of extraction methods on characteristic and composition of Indonesian cashew nut shell liquid, Industrial Crops and Products35 (2012) 230–236. 10.1016/j.indcrop.2011.07.007 Search in Google Scholar
6. Green, I. R., Tocoli, F. E. and Lee, S. H.: Molecular design of anti-MRSA agents based on the anacardic acid scaffold., Medical Chemistry15 (2007) 6236–6241.PMid:17601740; 10.1016/j.bmc.2007.06.022Search in Google Scholar PubMed
7. Wang, X., Kalali, E. N. and Wang, D. Y.: Renewable cardanol-based surfactant modified layered double hydroxide as a flame retardant for epoxy resin, ACS Sustainable Chemistry & Engineering3 (2015) 3281–3290. 10.1021/acssuschemeng.5b00871Search in Google Scholar
8. Mythili, C. V., Retna, A. M. and Gopalakrishnan, S.: Synthesis, mechanical, thermal and chemical properties of polyurethanes based on cardanol, Bull Mater Sci.27 (2004) 235–241. 10.1007/BF02708512Search in Google Scholar
9. Peungjitton, P., Sangvanich, P. and Pornpakakul, S.: Sodium cardanol sulfonate surfactant from cashew nut shell liquid, Journal of Surfactants and Detergents12 (2009) 85–89. 10.1007/s11743-008-1082-6Search in Google Scholar
10. Bruce, I. E., Mehta, L. and Porter, M. J.: Anionic surfactants synthesised from replenishable phenolic lipids, Journal Surfactants and Detergents12 (2009) 337–344. 10.1007/s11743-009-1116-8Search in Google Scholar
11. Castro, D. T. N., Vale, T. Y. F. and Dantas, N. A. A.: Micellization study and adsorption properties of an ionic surfactant synthesized from hydrogenated cardanol in air–water and in air–brine interfaces, Colloid & polymer science287 (2009) 81–87. 10.1007/s00396-008-1956-1Search in Google Scholar
12. Wang, J., Wang, Y. W. and Li, C. Q.: Synthesis and surface activity of biomass cardanol sulfonate surfactant, Advanced Material Research183 (2011) 1534–1538. 10.4028/www.scientific.net/AMR.183-185.1534Search in Google Scholar
13. Tyman, J. H. P. and Bruce, I. E.: Synthesis and characterization of polyethoxylate surfactants derived from phenolic lipids, Journal of Surfactants and Detergents.6 (2003) 291–297. 10.1007/s11743-003-0272-3Search in Google Scholar
14. Tyman, J. H. P. and Bruce, I. E.: Surfactant properties and biodegradation of polyethoxylates from phenolic lipids, Journal of Surfactants and Detergents7 (2004) 169–173. 10.1007/s11743-004-0300-3Search in Google Scholar
15. Scorzza, C., Nieves, J. and Francia, V.: Synthesis and physicochemical characterization of anionic surfactants derived from cashew nut shell oil, Journal Surfactants and Detergents13 (2010) 27–31. 10.1007/s11743-009-1143-5Search in Google Scholar
16. Shi, W., Wang, P., Li, C. et al.: Synthesis of Cardanol Sulfonate Gemini Surfactant and Enthalpy-Entropy Compensation of Micellization in Aqueous Solutions. Open Journal of Applied Sciences4 (6) (2014) 360–365. 10.4236/ojapps.2014.46033Search in Google Scholar
© 2017, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Detergent/Cleaning
- Consumers' Comprehension of the EU Energy Label for Washing Machines
- Effect of Washing Conditions on Cleaning Action of Linear Alkylbenzene Sulfonate in Hard Water
- Biosurfactants/Novel Surfactants
- Surface Activity Study of Water-Soluble Silk Fibroin Prepared using Cocoons and Ca(NO3)2 · 4H2O
- Experimental Design Procedure for Optimization of Saponin Extraction from Glycyrrhiza glabra: A Biosurfactant for Emulsification of Heavy Crude Oil
- Studies on Emulsification Properties of Glycolipids Biosurfactants
- Synthesis and Characterization of Saturated Cardanol Sulfonate Salt Gemini Surfactant
- Physical Chemistry
- Effect of Surface Dilatational Modulus on Foam Flow in a Porous Medium
- Oil-Water Interfacial Tensions of Silica Nanoparticle-Surfactant Formulations
- Interactions of Cationic, Anionic and Nonionic Surfactants with Cresol Red Dye in Aqueous Solutions: Conductometric, Tensiometric, and Spectroscopic Studies
- Application
- Physicochemical Properties of Amino Acid Surfactants and Their Use in Dyeing with Natural Plant Dyes
- Short Communication
- Demulsification of Water-in-Heavy Crude Oil Emulsion using Amphiphilic Ammonium Salts as Demulsifiers
Articles in the same Issue
- Contents/Inhalt
- Contents
- Detergent/Cleaning
- Consumers' Comprehension of the EU Energy Label for Washing Machines
- Effect of Washing Conditions on Cleaning Action of Linear Alkylbenzene Sulfonate in Hard Water
- Biosurfactants/Novel Surfactants
- Surface Activity Study of Water-Soluble Silk Fibroin Prepared using Cocoons and Ca(NO3)2 · 4H2O
- Experimental Design Procedure for Optimization of Saponin Extraction from Glycyrrhiza glabra: A Biosurfactant for Emulsification of Heavy Crude Oil
- Studies on Emulsification Properties of Glycolipids Biosurfactants
- Synthesis and Characterization of Saturated Cardanol Sulfonate Salt Gemini Surfactant
- Physical Chemistry
- Effect of Surface Dilatational Modulus on Foam Flow in a Porous Medium
- Oil-Water Interfacial Tensions of Silica Nanoparticle-Surfactant Formulations
- Interactions of Cationic, Anionic and Nonionic Surfactants with Cresol Red Dye in Aqueous Solutions: Conductometric, Tensiometric, and Spectroscopic Studies
- Application
- Physicochemical Properties of Amino Acid Surfactants and Their Use in Dyeing with Natural Plant Dyes
- Short Communication
- Demulsification of Water-in-Heavy Crude Oil Emulsion using Amphiphilic Ammonium Salts as Demulsifiers